
Palm OS® Debugger
Guide

Palm OS® Developer Suite

Written by Brian Maas and Jenny Green.
Technical assistance from Greg Clayton, Matt Fassiotto, Xu Zhang, Brian Dawbin, Steve Lemke, and Phil
Shoemaker.

Copyright © 2003–2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and you
may not modify this technical documentation or make any derivative work of it (such as a translation, localization,
transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION ANY
WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC.
ALSO EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, Palm OS, HotSync, and certain other trademarks and logos are trademarks or registered trademarks of
PalmSource, Inc. or its affiliates in the United States, France, Germany, Japan, the United Kingdom, and other
countries. These marks may not be used in connection with any product or service that does not belong to PalmSource,
Inc. (except as expressly permitted by a license with PalmSource, Inc.), in any manner that is likely to cause confusion
among customers, or in any manner that disparages or discredits PalmSource, Inc., its licensor, its subsidiaries, or
affiliates. All other product and brand names may be trademarks or registered trademarks of their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

Palm OS Debugger Guide
Document Number 3126-002
November 10, 2004
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Palm OS Debugger Guide iii

About This
Document
Palm OS Debugger Guide provides conceptual, guidance, and
reference information for developers who want to use Palm OS
Debugger to debug Palm OS® applications and shared libraries.

What This Book Contains
This book has the following organization:

• Chapter 1, “Introducing Palm OS Debugger,” on page 1 gives
a conceptual overview of Palm OS Debugger.

• Chapter 2, “Connecting Palm OS Debugger with a Target,”
on page 5 describes how you connect Palm OS Debugger
with debug targets.

• Chapter 3, “Setting Palm OS Debugger Preferences,” on
page 21 describes how to set the debug plug-in preferences
for Palm OS Debugger.

• Chapter 4, “Running Palm OS Debugger,” on page 45
describes the windows that make up the Palm OS Debugger
user interface.

• Chapter 5, “Palm OS Debugger Menu Reference,” on page 79
lists the menu commands that you use with Palm OS
Debugger.

• Chapter 6, “AdnDebug Manager,” on page 95 provides
conceptual and reference information on the ARM-based
debugger nub manager.

Additional Resources

iv Palm OS Debugger Guide

Additional Resources
• Documentation

PalmSource publishes its latest versions of documents for
Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

Palm OS Debugger Guide v

Table of Contents
 About This Document iii

What This Book Contains iii
Additional Resources iv

1 Introducing Palm OS Debugger 1
What Is Palm OS Debugger? 1
How Does Palm OS Debugger Compare to Palm Debugger? . . . 2
Prerequisites for Using Palm OS Debugger 2

Operating System Requirements 2
Debug Targets . . 2
Compiler Requirements 3

2 Connecting Palm OS Debugger with a Target 5
Overview of Debugger Communication 6
Debugging with Palm OS Garnet Devices 7

Installing the Debugger Nub. 7
Connecting Palm OS Debugger with a Palm OS Garnet Device . 8
Removing the Debugger Nub from a Tungsten T Device. . . 10

Debugging with Palm OS Garnet Simulator 11
Connecting Palm OS Debugger with Palm OS Garnet Simulator

11
Debugging with 68K-Based Devices 13

Connecting Palm OS Debugger with a 68K-Based Device . . 13
Debugging with Palm OS Emulator 15

Connecting Palm OS Debugger with Palm OS Emulator . . . 16
Overview of Application Debugging 17

68K-Based Application Debugging 17
ARM Subroutine Debugging. 18
Palm OS Protein Application Debugging 19

3 Setting Palm OS Debugger Preferences 21
How to Set Preferences 22
Importing and Exporting Preferences 24

Importing . 24

vi Palm OS Debugger Guide

Exporting . 24
Communications Preferences. 25

Serial Preferences. 25
Sockets Preferences 26

Debugger Plug-in Preferences 27
68K Preferences . 27
ARM Preferences. 28

Debugger UI Preferences 32
Fonts Preferences. 32
Session Preferences 33

Disassembler Preferences 34
68K Preferences . 34
ARM Preferences. 35

Download Plug-ins Preferences. 36
Protocols Preferences 37

68K Palm OS Debug Kernel Preferences 37
ARM Palm OS 5 Debug Nub Preferences 38

RTOS Plug-ins Preferences 38
Palm OS 6.0 Preferences 38

Runtime Helpers Preferences. 39
ARM Palm OS Preferences. 40

Symbolics Preferences 41
DWARF 1.1 Preferences 41
DWARF 2.0 Preferences 43

4 Running Palm OS Debugger 45
Palm OS Debugger Overview 46
Getting Started . 47

Modifying Preferences 47
Using the Palm OS Debugger Windows 48

Source View . 48
Files View . 55
Breakpoints View 58
Registers View . 62
Variables View . 64

Palm OS Debugger Guide vii

Global Variables View 66
Memory View . 67
Processes View. 69
Stack Trace View . 70
Expressions View 70
Profiler View . 73
STDIO Console . 73
Debug Console . 75

5 Palm OS Debugger Menu Reference 79
Palm OS Debugger Menu Reference Overview 79
File . 79

Open . 80
Save . 80
Recent File List. 80
Exit . 80

Edit . 81
Undo . 81
Cut . 81
Copy . 81
Paste . 82
Find . 82
Find next . 82
Find previous . 82
Next breakpoint . 82
Previous breakpoint 82
Key Bindings . 82
Preferences . 83

View . 84
Main Toolbar . 85
Window Toolbar . 85
Status Bar . 85

Target . 85
Connect . 85
Disconnect . 86

viii Palm OS Debugger Guide

Append Symbolics 86
Remove Symbolics 86
Load Memory . 86
Save Memory . 87
Flash Memory . 88

Control . 88
Run . 88
Restart . 88
Stop . 89
Kill . 89
Step . 89
Step In . 89
Step Out . 89

Window . 89
Cascade . 90
Tile . 90
Arrange Icons . 90
Files Window . 90
Breakpoints Window 91
Registers Window 91
Variables Window 91
Global Variables Window 91
Memory Window 91
Processes Window 91
Stack Trace Window 91
Expressions Window 92
Profiler Window . 92
Create Dockable Windows. 92
File Names . 92

Help . 92
About Palm OS Debugger 93

6 AdnDebug Manager 95
AdnDebug Manager Concepts 96

Activate the ARM Debugger Nub 96

Palm OS Debugger Guide ix

Register with Palm OS Debugger 96
AdnDebug Manager Constants 97
AdnDebug Manager Functions and Macros 98

 . 103

 Index 105

x Palm OS Debugger Guide

Palm OS Debugger Guide 1

1
Introducing Palm OS
Debugger
This chapter provides a conceptual overview of Palm OS Debugger.
It describes:

• “What Is Palm OS Debugger?” on page 1

• “How Does Palm OS Debugger Compare to Palm
Debugger?” on page 2

• “Prerequisites for Using Palm OS Debugger” on page 2

What Is Palm OS Debugger?
Palm OS Debugger is a full-function debug tool that you can use to
debug your Palm OS® applications and shared libraries. Palm OS
Debugger provides support for multiple symbolic file debugging.

Palm OS Debugger provides the following features:

• Full assembly, mixed, and source-level debugging for 68K
applications, PACE Native Objects (PNO), and Palm OS
Protein applications

• Support for shared library debugging

• Support for debugging with multiple symbolic files

• Fully customizable short cut keys

• Views for watching expressions, memory, processes,
registers, and variables.

• Setting and viewing breakpoints

• Support for PRC and SYM 3.5 symbolic files

• Support for ELF/DWARF 1.1 and ELF/DWARF 2.0

Introducing Palm OS Debugger
How Does Palm OS Debugger Compare to Palm Debugger?

2 Palm OS Debugger Guide

How Does Palm OS Debugger Compare to Palm
Debugger?

• Palm OS Debugger is a tool for debugging 68K applications,
PACE Native Objects, and Palm OS Protein applications.

Debugging 68K-Based Applications: Palm OS Debugger
supports connecting to the 68K debug nub of a 68K-based
device and to the 68K debug nub built into the PACE
component of an ARM-based device. Palm OS Debugger also
connects to the 68K debug nub of Palm OS Emulator and
Palm OS Simulator.

Debugging PACE Native Objects: Palm OS Debugger supports
connecting to the ARM debug nub of an ARM-based device.

Palm OS Debugger is the tool that is described in this
manual.

• Palm Debugger is used for debugging Palm OS 68K
applications on both Mac OS and Windows 95/98/NT
platforms. Palm Debugger supports 68K assembly
debugging, not source level debugging.

Palm Debugger supports connecting with either the console
or debugging nub of a 68K-based device or Palm OS
Emulator. For information about Palm Debugger, see Palm
OS Development Tools Guide.

Prerequisites for Using Palm OS Debugger
Palm OS Debugger requires the following hardware and software
components.

Operating System Requirements
Palm OS Debugger runs on Windows 2000 and Windows XP.

Debug Targets
• You can use Palm OS Debugger to debug 68K-based Palm OS

application code running on a 68K-based device, an ARM-
based device, and Palm OS Emulator.

Introducing Palm OS Debugger
Prerequisites for Using Palm OS Debugger

Palm OS Debugger Guide 3

• You can use Palm OS Debugger to debug PACE Native
Objects on an ARM-based device (a device running Palm OS
Garnet or Palm OS Cobalt).

• You can use Palm OS Debugger to debug Palm OS Protein
applications on a device running Palm OS Cobalt.

Palm OS Debugger connects with any of these debug targets over a
serial or socket connection.

For detailed information, see Chapter 2, “Connecting Palm OS
Debugger with a Target,” on page 5.

Compiler Requirements
Palm OS Debugger can debug code that is compiled by the
CodeWarrior for Palm OS tool suites, the ARM ADS 1.2 compiler, or
any toolchain that can create PRC files with a supported symbolic
format. Supported symbolic formats are ELF/DWARF 1.1, ELF/
DWARF 2.0, and SYM 3.3.

In general, Palm OS Debugger supports any compiler that emits
DWARF (Debugging With Attribute Record Format) debugging
information Version 1.1 or above. However, because DWARF
Version 1 and DWARF Version 2 are two different standards, Palm
OS Debugger implements support for each in a separate plug-in.
Only one of these plug-ins can be loaded at any given time. For best
results while debugging, you should not combine code that uses
different DWARF versions.

Introducing Palm OS Debugger
Prerequisites for Using Palm OS Debugger

4 Palm OS Debugger Guide

Palm OS Debugger Guide 5

2
Connecting Palm OS
Debugger with a
Target
This chapter describes how to connect Palm OS Debugger with a
debug target.

Overview of Debugger Communication 6

Debugging with Palm OS Garnet Devices 7

Debugging with Palm OS Garnet Simulator 11

Debugging with 68K-Based Devices 13

Debugging with Palm OS Emulator 15

Overview of Application Debugging 17

Connecting Palm OS Debugger with a Target
Overview of Debugger Communication

6 Palm OS Debugger Guide

Overview of Debugger Communication
Palm OS Debugger enables debugging via a debugger plug-in
through a communication plug-in connection to a debugger nub on
a debug target. See Figure 2.1 for a graphical representation of this
communication flow.

Figure 2.1 Palm OS Debugger Communication

Palm OS Debugger supports the following communications plug-ins:

• Serial, used primarily to connect to a Palm OS device that
supports a serial connection.

• USB, used primarily to connect to a Palm OS device that
supports a USB connection.

• Sockets, used to communicate with Palm OS Emulator and
Palm OS Garnet Simulator.

The debugger nub can be any of the following debug targets:

• an ARM debugger nub, running on an ARM-based device.
(Note: For some devices that use Palm OS Garnet, you need
to install a device-specific ARM debugger nub. For devices
that run Palm OS Cobalt, the ARM debugger nub is built into
the device.)

• a 68K debugger nub, built into PACE on an ARM-based
device or on Palm OS Garnet Simulator. (PACE is the Palm
OS Application Compatibility Environment. For more
information about PACE, see Palm OS Simulator Guide.)

• a 68K debugger nub, built into a 68K-based device.

• a 68K debugger nub, built into Palm OS Emulator.

Connecting Palm OS Debugger with a Target
Debugging with Palm OS Garnet Devices

Palm OS Debugger Guide 7

Debugging with Palm OS Garnet Devices
When debugging with Palm OS Garnet devices, the Palm OS
Debugger’s ARM Palm OS 5 Debug Nub plug-in communicates
through the serial connection with the ARM Debugger Nub for
Palm OS Garnet on the device.

NOTE: Each ARM-based device needs to have a custom-built
debug nub. To use an ARM-based handheld not described here,
contact your handheld manufacturer to see whether a debug nub
is available for your ARM-based handheld.

The following devices have a supported ARM debugger nub (at
the time this book was written).

For palmOne devices Tungsten C, Tungsten E, Tungsten T,
Tungsten T2, Tungsten T3, Tungsten T5, Zire 71, and Zire 72:
These debugger nubs are available from the PluggedIn program
at http://pluggedin.palmone.com

For the Treo 600, the debugger nub is included on the device.

For the Tapwave Zodiac, the debugger nub is included on the
device.

Installing the Debugger Nub
As an example, to install the debugger nub on a Tungsten T, follow
this process:

1. Using Palm Desktop’s Install Tool, add the debugger nub file
DebugNub5-PalmTT.prc to be installed using a HotSync®
operation.

2. Place the Tungsten T in a cradle, and press the HotSync
button install the PRC file on the device.

3. Once the HotSync operation has completed, press the reset
button on the Tungsten T device to restart Palm OS and
complete the installation.

http://pluggedin.palmone.com

Connecting Palm OS Debugger with a Target
Debugging with Palm OS Garnet Devices

8 Palm OS Debugger Guide

Connecting Palm OS Debugger with a Palm OS
Garnet Device
To connect Palm OS Debugger with a Palm OS Garnet device,
complete the following setup steps:

1. Set Palm OS Debugger’s ARM Palm OS 5 Debug Nub
protocol plug-in preferences.

2. Test the connection between Palm OS Debugger and the
device.

The following sections cover these steps in detail.

1. Setting the ARM Palm OS 5 Debug Nub Plug-In Preferences

To set the ARM Palm OS 5 Debug Nub plug-in preferences:

• Open Palm OS Debugger

• Select Edit > Preferences

• Click Import to import the preset preferences. The dialog box
shown in Figure 2.2 on page 9 opens.

Connecting Palm OS Debugger with a Target
Debugging with Palm OS Garnet Devices

Palm OS Debugger Guide 9

Figure 2.2 Import Preferences Dialog Box

• Open the folder Preset Prefs, and select the file
PalmOS5.x-DebugNub.xml in the dialog box. Then click
Open to set the debugger preferences. If Palm OS Debugger
displays a message dialog box asking whether to save
modified preferences, click Yes.

• To verify the serial communications port settings, select Edit
> Preferences, expand the Communications category, and
click Serial.

2. Testing the Connection

• In Palm OS Debugger, open the Palm OS application (PRC
file) to debug by selecting File > Open.

• Place your Palm OS device in the cradle. Make sure that the
cradle is connected properly to the computer.

• Turn on the Palm OS device.

Connecting Palm OS Debugger with a Target
Debugging with Palm OS Garnet Devices

10 Palm OS Debugger Guide

• Enter the debugging shortcut, as shown below, in the input
area to enable the debugger nub.

• Select Control > Run to start the debugging session.

NOTE: To draw the debugging shortcut, follow these steps:

1. Draw the lowercase, cursive “L” character.
2. Tap the stylus twice, to generate a dot (a period).
3. Draw the number 2.

For a more detailed description of application debugging, see
“Overview of Application Debugging” on page 17.

Removing the Debugger Nub from a
Tungsten T Device
When you are finished using your Tungsten T to debug, you can
delete the debug nub by following these steps:

• Perform a “no-notify” reset by holding down the “Up”
button on the device while simultaneously pressing the reset
button.

• From the Launcher application, select the Delete menu item.

• From the Delete dialog, select DebugNub5-PalmTT and tap
Delete.

.2

Connecting Palm OS Debugger with a Target
Debugging with Palm OS Garnet Simulator

Palm OS Debugger Guide 11

Debugging with Palm OS Garnet Simulator
When debugging with Palm OS Garnet Simulator, the Palm OS
Debugger’s 68K Palm OS Debug Kernel protocol plug-in
communicates through a socket connection with the 68K debugger
nub on Palm OS Garnet Simulator.

NOTE: Palm OS Garnet Simulator includes PACE with the 68K
debugger nub. You do not need to install a debug nub as part of
the setup tasks for debugging with Palm OS Garnet Simulator.

Palm OS Garnet Simulator can be used to debug 68K-based
Palm OS applications. You cannot use Palm OS Garnet Simulator
to debug native ARM subroutines.

Connecting Palm OS Debugger with Palm OS
Garnet Simulator
To connect Palm OS Debugger with Palm OS Garnet Simulator,
complete the following setup steps:

1. Set Palm OS Debugger’s 68K Palm OS Debug Kernel
protocol plug-in preferences.

2. Set Palm OS Garnet Simulator’s communication settings.

3. Test the connection between Palm OS Debugger and Palm
Garnet OS Simulator.

The following sections cover these steps in detail.

1. Setting the 68K Palm OS Debug Kernel Plug-In Preferences

To set the 68K Palm OS Debug Kernel plug-in preferences:

• Open Palm OS Debugger.

• Select Edit > Preferences.

• Click Import to import the preset preferences. The dialog box
shown in Figure 2.2 on page 9 opens.

Connecting Palm OS Debugger with a Target
Debugging with Palm OS Garnet Simulator

12 Palm OS Debugger Guide

• Open the folder Preset Prefs, and select the
PalmOS.68KPoser.xml preset definition in the dialog
box.

Then click Open to set the debugger preferences. If Palm OS
Debugger displays a message dialog box asking whether to
save modified preferences, click Yes.

2. Setting Palm OS Garnet Simulator’s Communication
Settings

In Palm OS Garnet Simulator: Select Settings > Communication >
Communication ports to bind the 68K debugger transport to
localhost:2000.

3. Testing the Connection

• In Palm OS Debugger, open the Palm OS application (PRC
file) to debug by selecting File > Open.

• Enter the debugging shortcut, as shown below, in the input
area to enable the debugger nub.

• Select Control > Run to start the debugging session.

NOTE: To draw the debugging shortcut, follow these steps:

1. Draw the lowercase, cursive “L” character.
2. Tap the stylus twice, to generate a dot (a period).
3. Draw the number 2.

For a more detailed description of application debugging, see
“Overview of Application Debugging” on page 17.

.2

Connecting Palm OS Debugger with a Target
Debugging with 68K-Based Devices

Palm OS Debugger Guide 13

Debugging with 68K-Based Devices
When debugging with 68K-based devices, the Palm OS Debugger’s
68K Palm OS Debug Kernel protocol plug-in communicates through
a serial or USB connection with the 68K debugger nub on the device.

NOTE: Some 68K-based devices do not support debugging
over a USB connection. Contact your device manufacturer for
more information about your device.

Current 68K-based devices are manufactured with the 68K
debugger nub already included. You do not need to install a debug
nub as part of the setup tasks for debugging with 68K-based
devices.

NOTE: Remember that 68K-based devices can be used to
debug only 68K-based Palm OS applications. You cannot use a
68K-based device to debug ARM code.

Connecting Palm OS Debugger with a 68K-
Based Device
To connect Palm OS Debugger with a 68K-based device, complete
the following setup steps:

1. Set Palm OS Debugger’s 68K Palm OS Debug Kernel
protocol plug-in preferences.

2. Test the connection between Palm OS Debugger and the 68K-
based device.

The following sections cover these steps in detail.

1. Setting the 68K Palm OS Debug Kernel Plug-In Preferences

To set the 68K Palm OS Debug Kernel plug-in preferences:

• Open Palm OS Debugger

• Select Edit > Preferences

• Click Import to import the preset preferences. The dialog box
shown in Figure 2.2 on page 9 opens.

Connecting Palm OS Debugger with a Target
Debugging with 68K-Based Devices

14 Palm OS Debugger Guide

• Open the folder Preset Prefs\Debugger Plugins -
68K, and select the Palm OS 68K preset file dependent on

your serial connection:

– For serial port COM1, select
PalmOS.68KDevice.Serial.COM1.xml in the dialog
box.

– For serial port COM2, select
PalmOS.68KDevice.Serial.COM2.xml in the dialog
box.

– For serial port COM3, select
PalmOS.68KDevice.Serial.COM3.xml in the dialog
box.

– For serial port COM4, select
PalmOS.68KDevice.Serial.COM4.xml in the dialog
box.

– For USB, select PalmOS.68KDevice.USB.xml in the
dialog box.

Then click Open to set the debugger preferences. If Palm OS
Debugger displays a message dialog box asking whether to
save modified preferences, click Yes.

2. Testing the Connection

NOTE: Before debugging an application over USB, it is best to
first perform a HotSync operation to test the USB communication
with the device. After you have completed a HotSync operation,
you should be able to follow the process described here.

• In Palm OS Debugger, open the Palm OS application (PRC
file) to debug by selecting File > Open.

• Enter the debugging shortcut, as shown below, in the input
area to enable the debugger nub.

.2

Connecting Palm OS Debugger with a Target
Debugging with Palm OS Emulator

Palm OS Debugger Guide 15

NOTE: To draw the debugging shortcut, follow these steps:

1. Draw the lowercase, cursive “L” character.
2. Tap the stylus twice, to generate a dot (a period).
3. Draw the number 2.

• Select Control > Run to start the debugging session.

If you are using HotSync Manager 4.1 or earlier to debug a 68K
application on a 68K device, note that whenever you have to soft
reset the device, you will have to re-enter the debugging shortcut.
Also, after a soft reset, the USB port does not work immediately and
the first HotSync operation has to be cancelled and followed by a
second HotSync operation. The second HotSync operation usually
succeeds. Only after you are able to complete a HotSync operation
will you be able to debug your application.

For a more detailed description of application debugging, see
“Overview of Application Debugging” on page 17.

Debugging with Palm OS Emulator
When debugging with Palm OS Emulator, the Palm OS Debugger’s
68K Palm OS Debug Kernel protocol plug-in communicates through
a socket connection with the 68K debugger nub on Palm OS
Emulator.

Palm OS Emulator includes the 68K debugger nub. You do not need
to install a debug nub as part of the setup tasks for debugging with
Palm OS Emulator.

NOTE: Palm OS Emulator can be used to debug only 68K-
based Palm OS applications. You cannot use Palm OS Emulator
to debug ARM code.

Connecting Palm OS Debugger with a Target
Debugging with Palm OS Emulator

16 Palm OS Debugger Guide

Connecting Palm OS Debugger with Palm OS
Emulator
To connect Palm OS Debugger with Palm OS Emulator, complete
the following setup steps:

1. Set Palm OS Debugger’s 68K Palm OS Debug Kernel
protocol plug-in preferences.

2. Test the connection between Palm OS Debugger and Palm
OS Emulator.

The following sections cover these steps in detail.

1. Setting the 68K Palm OS Debug Kernel Plug-In Preferences

To set the 68K Palm OS Debug Kernel plug-in preferences:

• Open Palm OS Debugger

• Select Edit > Preferences

• Click Import to import the preset preferences. The dialog box
shown in Figure 2.2 on page 9 opens.

• Open the folder Preset Prefs\Debugger Plugins -
68K, and select the PalmOS.68KPoser.xml preset

definition in the dialog box.

Then click Open to set the debugger preferences. If Palm OS
Debugger displays a message dialog box asking whether to
save modified preferences, click Yes.

2. Testing the Connection

• In Palm OS Debugger, open the Palm OS application (PRC
file) to debug by selecting File > Open.

• Start Palm OS Emulator, and make sure Emulator is idle,
showing the Launcher application.

• Select Control > Run to start the debugging session.

For a more detailed description of application debugging, see
“Overview of Application Debugging” on page 17.

Connecting Palm OS Debugger with a Target
Overview of Application Debugging

Palm OS Debugger Guide 17

Overview of Application Debugging
To start debugging an application in Palm OS Debugger, open the
Palm OS application (PRC file) to debug by selecting File > Open.

68K-Based Application Debugging
To debug a Palm OS 68K application, you need to first connect to a
target that can run a 68K application:

• “Debugging with Palm OS Garnet Devices” on page 7

• “Debugging with Palm OS Garnet Simulator” on page 11

• “Debugging with 68K-Based Devices” on page 13

• “Debugging with Palm OS Emulator” on page 15

Palm OS Debugger displays the application debugging session
window, with the corresponding 68K symbolic file information for
the Palm OS application you selected when you connected to the
debugging target.

The symbolic information is automatically loaded for you if the
symbolic file for the Palm OS application is in the same directory as
the application’s PRC file. (The symbolic file has the same filename
as the PRC file but with the file extension PSYM.) If the symbolic file
is moved or renamed, you can load it manually by selecting
Target > Append Symbolics.

If the source files are available, you can set breakpoints in the source
view. (Palm OS Debugger may not be connected to the debug target
yet, so the breakpoints may be marked as unresolved.)

To connect Palm OS Debugger with the debug target, select
Control > Run to start the debugging session:

• If the 68K debug console is already active, Palm OS
Debugger connects with the debug target.

• If the 68K debug console is not active, Palm OS Debugger
prompts you to activate the debug console by entering
shortcut-2:

Connecting Palm OS Debugger with a Target
Overview of Application Debugging

18 Palm OS Debugger Guide

NOTE: To draw the debugging shortcut, follow these steps:

1. Draw the lowercase, cursive “L” character.
2. Tap the stylus twice, to generate a dot (a period).
3. Draw the number 2.

Once Palm OS Debugger has connected with the debug console,
Palm OS Debugger loads the application on the debug target. The
debug target launches the application.

NOTE: Due to a problem in the 68K Serial Link Manager for the
Palm m500 device, the stop and kill commands may not initially
respond when you debug a 68K application using an m500
device. To correct this problem, turn off the m500 device and
then turn it on again.

ARM Subroutine Debugging
ARM subroutines, also called PACE native objects (PNO), are
typically built and written to files of the following form:

ARM*####.bin

where “*” is any character, and “####” is a hexadecimal
representation of the ARM subroutine resource ID, or

ARM*####.sbin

for subroutines that are larger than 64 KB.

If Palm OS Debugger finds code resources of type “ARM*” in the
Palm OS application, then Palm OS Debugger looks for
corresponding symbolic file of the form ARM*####.bin.elf (or
ARM*####.sbin.elf) in the same directory as the Palm OS
application’ PRC file. If Palm OS Debugger finds an ARM symbolic
file, then Palm OS Debugger opens an ARM debug session window.

Interaction Between 68K and ARM Debug Windows

Palm OS Debugger presents debug information for 68K and ARM
code in separate debug windows. To a certain extent, Palm OS

Connecting Palm OS Debugger with a Target
Overview of Application Debugging

Palm OS Debugger Guide 19

Debugger treats the two components as if they are being run on two
different CPUs, though they are not completely independent.

When a break or crash occurs, the debug session window
corresponding to the code that received the break or crash becomes
the front-most window. The status in the lower-right corner of the
window indicates that the code execution is stopped.

The 68K debug window is a representation of PACE running on the
debug target. PACE, the Palm Application Compatibility
Environment, not only emulates a 68K processor executing the 68K
code, but also provides support for all 68K debug services.

PACE is an ARM application. Any time the ARM session is stopped,
the 68K session is implicitly stopped as well, even if the debug
window status indicates that the 68K session is running. When the
ARM session is resumed, PACE and the 68K session continue to
execute starting from where the session was implicitly stopped.

When debugging with both 68K and ARM sessions, you should be
able to stop either session by clicking the Stop icon in the toolbar or
using the Stop menu item. For interactive debugging, it is best to
stop and resume execution in only one session window at a time:

If your code causes a crash in the ARM debug nub but not the 68K
debug console, you may be able to use the 68K session window to
determine what the 68K code was doing prior to the crash. To
investigate, select the 68K session window, stop execution, and
examine the stack trace, variables, registers, and memory values
displayed.

If you can recover from the crash in the ARM session by changing
the program counter or a register, then you may be able to resume
execution as well.

Palm OS Protein Application Debugging
To debug a Palm OS Protein application, you need to first connect to
a target that can run a Palm OS Protein application. That is, you
need to connect to a device that is running Palm OS Cobalt or later.

At the time this book was written, there were no targets that support
running Palm OS Protein applications.

Connecting Palm OS Debugger with a Target
Overview of Application Debugging

20 Palm OS Debugger Guide

Palm OS Debugger Guide 21

3
Setting Palm OS
Debugger
Preferences
This chapter discusses Palm OS Debugger preferences.

The easiest way to set preferences is to import preset values from a
preferences XML file. However, this chapter describes the
preferences in detail in case you need to set specific preferences for
debugging scenarios not covered by the preset value files.

This chapter covers the following topics:

• “How to Set Preferences” on page 22

• “Importing and Exporting Preferences” on page 24

• “Communications Preferences” on page 25

• “Debugger Plug-in Preferences” on page 27

• “Debugger UI Preferences” on page 32

• “Disassembler Preferences” on page 34

• “Download Plug-ins Preferences” on page 36

• “Protocols Preferences” on page 37

• “Runtime Helpers Preferences” on page 39

• “Symbolics Preferences” on page 41

Setting Palm OS Debugger Preferences
How to Set Preferences

22 Palm OS Debugger Guide

How to Set Preferences
To set Palm OS Debugger preferences:

1. From the Edit menu, select Preferences. This opens the
Debugger Preferences dialog box.

Figure 3.1 Debugger Preferences Dialog Box

2. Select a category from the category tree, click the plus sign
(+) next to it to expand it, and select a subcategory. This
opens a preference panel for that subcategory.

Setting Palm OS Debugger Preferences
How to Set Preferences

Palm OS Debugger Guide 23

Figure 3.2 Debugger Preferences dialog box with the Serial
subcategory selected

3. Edit the settings.
4. Click Apply to save your changes, or click Revert to discard

the changes. (You also have the option of clicking Cancel to
discard the changes, but clicking Cancel also closes the
Debugger Preferences window.)

5. Select other categories and edit their preference panels.
6. To return a panel to its default settings, open the panel and

click Default.
7. When you are finished setting preferences, click OK to close

the Debugger Preferences dialog box.

Setting Palm OS Debugger Preferences
Importing and Exporting Preferences

24 Palm OS Debugger Guide

NOTE: In the panel where the preference settings are
displayed, you can resize the caption field and the value field. For
example, if the field is too short and the contents of the field do
not display completely, you can make the field longer. To do this,
use the resize bar located between the caption field and the value
field. Drag the resize bar to the left or right to expose the contents
of either field.

Importing and Exporting Preferences
Palm OS Debugger offers pre-set preferences files, written in XML
format, that you can use to set up the appropriate preferences for
debugging. You can also create your own pre-set preferences files.

Importing
To use pre-set preferences, use the Import button in the Debugger
Preferences window.

To import pre-set preferences:

1. In the Debugger Preferences window, click the Import
button. This opens a dialog box entitled Select an XML data
file to import.

2. Browse to the directory Preset Prefs and select the file
whose name corresponds to the debug target you are using.

Exporting
You can create your own pre-set preferences files.

Exporting Preferences from One Preferences Panel

To create a pre-set preferences file containing the preferences from
one preferences panel:

1. In the Debugger Preferences window, select an item from the
category tree to display the preferences panel containing the
preferences you want to export.

2. Click the Export button to open a Save as dialog box.

Setting Palm OS Debugger Preferences
Communications Preferences

Palm OS Debugger Guide 25

3. Browse to the location for your preferences file.

4. Type a name for the preferences file.

5. Click Save to save your preferences in an XML file.

Exporting All Palm OS Debugger Preferences

To create a pre-set preferences file containing all your Palm OS
Debugger preferences:

1. In the Debugger Preferences window, click the Export All
button to open a Save as dialog box.

2. Browse to the location for your preferences.
3. Type a name for the preferences file.

4. Click Save to save all your Palm OS Debugger preferences in
an XML file.

Communications Preferences
To set Communications Plug-in preferences, select
Communications from the category tree, and then select Serial or
Sockets.

The default settings in this panel are the correct settings for
debugging with a Palm OS Garnet or Palm OS Cobalt device over a
serial connection.

Serial Preferences
If you are connecting a device to Palm OS Debugger through a serial
connection, set these preferences.

Port

Default setting is COM1.

Baud Rate

Default setting is 57600.

Data bits

Default setting is 8.

Setting Palm OS Debugger Preferences
Communications Preferences

26 Palm OS Debugger Guide

Stop bits

Default setting is 1.

Parity

Default setting is None.

DTR Enable

Default setting is false, which means that Data Terminal Ready
(DTR) is not enabled.

CTS Enable

Default setting is false, which means that Clear To Send (CTS) is not
enabled.

XON/XOFF Enable

Default setting is false, which means that XON/XOFF (special
characters that you can insert into the byte stream) is not enabled.

XON Character

Default setting is 0x11.

XOFF Character

Default setting is 0x13.

Sockets Preferences
If you are connecting to Palm OS Debugger through a sockets
connection, set these preferences. This plug-in communicates over
standard sockets to the IP address and port that you specify here.

NOTE: These settings are available for connecting to Palm OS
Simulator or Palm OS Emulator. Note that no Palm OS Emulator
ROM is available for Palm OS Garnet or Palm OS Cobalt.

Setting Palm OS Debugger Preferences
Debugger Plug-in Preferences

Palm OS Debugger Guide 27

IP Address

Default setting is 127.0.0.1, which is the setting to use to connect to a
Palm OS Emulator or Palm OS Simulator session running on the
same computer that is running Palm OS Debugger.

Port

Default setting is 2000.

Debugger Plug-in Preferences
To set Debugger Plug-in preferences, select Debugger Plug-ins
from the category tree, and then select 68K or ARM.

The Debugger Plug-in is a parent of the Protocols Plug-in (for
information on Protocol settings, see “Protocols Preferences” on
page 37).

68K Preferences
Set these preferences for general 68K debugging settings that affect
all 68K-related protocols. Currently, the only protocol available for
68K debugging is the 68K Palm OS Debug Kernel Protocol Plug-in.

This plug-in is used to communicate with 68K-based devices or
with ARM-based devices through PACE. (PACE is the Palm OS
Application Compatibility Environment. For more information
about PACE, see Palm OS Simulator Guide.)

Protocol

Default setting is 68K Palm OS Debug Kernel Protocol Plug-in. This is
the only valid setting for 68K debugging.

Max stack frames

Default setting is 100.

When you are doing a stack trace, if the stack crawl is taking a long
time, you can limit the maximum number of stack frames that get
displayed to improve the stack crawl speed.

Setting Palm OS Debugger Preferences
Debugger Plug-in Preferences

28 Palm OS Debugger Guide

Cache stack backtrace

Default setting is false, which means the Stack Trace window (see
“Stack Trace View” on page 70) does not reuse information from the
previous stack trace.

If you set this to true, the Stack Trace window may reuse
information from the previous stack trace, if you are still in the same
function the next time you stop someplace in the code.

Stop at entry point

Default setting is true, which means Palm OS Debugger stops at the
entry point of your program, as if you had set a breakpoint there.
(You can specify your application entry point under Protocol
Preferences > 68K Palm OS Debug Kernel Preferences. See “Application
Entry Point” on page 37.)

ARM Preferences
Set these preferences if you are connecting to an ARM device.

NOTE: Rather than setting these preferences manually, you can
import preset preferences for most protocols. For details, see
“Importing and Exporting Preferences” on page 24.

Protocol

Select the protocol that corresponds to the type of connector you are
using. The only valid option is ARM Palm OS 5 Debug Nub.

Real Time OS Plug-in

Default setting is None. Palm OS Debugger uses the other values for
JTAG debugging. These values are not valid for application
debugging with debugging nubs such as the 68K-based Debug
Manager, PACE, or the ARM-based Debug Manager.

Palm OS Cobalt users also have the option of selecting Palm OS 6.0,
which means Palm OS Debugger keeps track of all the processes
and threads currently running in Palm OS Cobalt.

Setting Palm OS Debugger Preferences
Debugger Plug-in Preferences

Palm OS Debugger Guide 29

Substitute SB for R9

Default setting is true. Do not change this setting if you are doing
Palm OS development.

The true setting means that Static Base (SB) is substituted for register
9 (R9). Normally, when the symbolics file contains global variables,
the global variables are reported as being in memory at R9 plus an
offset. Because the ARM-based Palm OS shared library model
relocates global variables using a complex expression, set this
preference to true to substitute the Static Base for R9.

SB expression

Default setting for Palm OS Garnet is genreg_pc sect_base constu(8)
plus deref dup constu(0xFFFF) and swap constu(16) ror constu(0xFFFF)
and constu(5) rol plus genreg_gp1 deref plus deref.

Default setting for Palm OS Cobalt is genreg_pc sect_base constu(8)
plus deref.

Do not change this setting if you are doing Palm OS development.
This setting specifies the expression that Palm OS Debugger uses to
compute the Static Base.

Max stack frames

Default setting is 100.

When you are doing a stack trace, if the stack crawl is taking a long
time, you can limit the maximum number of stack frames that get
displayed to improve the stack crawl speed.

Cache stack backtrace

Default setting is false, which means the Stack Trace window (see
“Stack Trace View” on page 70) does not reuse information from the
previous stack trace.

If you set this to true, the Stack Trace window may reuse
information from the previous stack trace, if you are still in the same
function the next time you stop someplace in the code.

Correct stack backtrace return address

Default setting is true.

Setting Palm OS Debugger Preferences
Debugger Plug-in Preferences

30 Palm OS Debugger Guide

When you are doing a stack crawl, the return address often points to
the instruction following the instruction that called the current
subroutine. Setting this preference to true will attempt to correct
stack backtrace return addresses to show the actual instruction
which called the stack function.

Setting this preference to false will disable this feature.

Launch action

This setting specifies what Palm OS Debugger does when you click
Run for the first time.

The options are:

• Set PC to entry point and halt

• Set PC to entry point and run

• Set PC to reset vector and halt (the reset vector = 0, or
0xffff0000)

• Set PC to entry point and run

• Soft reset

• Hard reset

• Nothing

For debugging applications with the Palm OS Garnet ARM debug
nub, set Launch action to Nothing.

Skip downloading code to target

Default setting is false, though an imported setting may change this
value to true.

If the code has already been downloaded to the target, you should
set this to true so that Palm OS Debugger does not download ARM-
based code to the ARM debug nub. (Downloading 68K-based code
is handled by the 68K plug-in.)

Allow ROM address overriding

Default setting is false.

This setting is not used for application debugging.

Setting Palm OS Debugger Preferences
Debugger Plug-in Preferences

Palm OS Debugger Guide 31

Download Helper Plug-in

Default setting is None. This setting is not used for application
debugging.

Default CPU when unknown

Default setting is ARM. The other option is Thumb.

Symbolics files generally tell Palm OS Debugger exactly which parts
of the code are ARM and which parts of the code are Thumb. Palm
OS Debugger needs to know which type of code is at a specific
address to set breakpoints correctly (breakpoint instructions differ
for ARM and Thumb).

This preference specifies how Palm OS Debugger treats code when
there are no symbolics for a specific address.

Type/Creator section name

Default setting is .text. In most cases, you should not change this
setting.

Palm OS Debugger uses this setting with the Type/Creator section
offset setting.

Type/Creator section offset

Default setting is 20. Do not change this setting.

The Type/Creator section offset and Type/Creator section offset
settings tell Palm OS Debugger where to find a shared library’s
type, creator ID, resource, and resource ID information in an ELF
file. Palm OS Debugger uses these settings to process shared library
load and unload notifications, and to enable and disable
breakpoints in a shared library.

Each Palm OS shared library has unique shared library data in the
initial bytes of the code section. By default, the code section in the
ELF file is named .text.

Auto symbolic load directory 1

Default setting is to leave this field blank.

Set this field to indicate which directory Palm OS Debugger should
recursively scan first in order to find symbolic files.

Setting Palm OS Debugger Preferences
Debugger UI Preferences

32 Palm OS Debugger Guide

Auto symbolic load directory 2

Default setting is to leave this field blank.

Set this field to indicate a subsequent directory Palm OS Debugger
should recursively scan in order to find symbolic files.

Auto symbolic load directory 3

Default setting is to leave this field blank.

Set this field to indicate a subsequent directory Palm OS Debugger
should recursively scan in order to find symbolic files.

Memory mapped register definition file

Default setting is to leave this field blank. If you have created a
Memory Mapped Definition file, specify the name and path here.

A Memory Mapped Definition file is an XML file describing all
memory mapped registers that are available for a target. These can
also be used to describe statically located global variables that are
not described in symbolics. For more information and complete
XML format documentation, see the Readme file at:

SDK/tools/Palm OS Debugger/Memory Mapped
Registers/ReadMe.txt

Also see the sample XML file at:

SDK/tools/Palm OS Debugger/Memory Mapped
Registers/SampleDefs.xml

Debugger UI Preferences
To set UI preferences, select Debugger UI from the category tree,
and then select Fonts or Session.

Fonts Preferences
Select a font for the data displayed in the Palm OS Debugger
windows.

Source view

Default setting is Courier New, 10pt.

Setting Palm OS Debugger Preferences
Debugger UI Preferences

Palm OS Debugger Guide 33

Files view

Default setting is MS Sans Serif, 9pt.

Breakpoints view

Default setting is MS Sans Serif, 9pt.

Registers view

Default setting is Courier New, 9pt.

Variables view

Default setting is Courier New, 9pt.

Global Variables view

Default setting is Courier New, 9pt.

Memory view

Default setting is Courier New, 9pt.

Stack Trace view

Default setting is Courier New, 9pt.

Consoles

This sets the font used to display output in the STDIO Console
window and the Debug Console window.

Default setting is Courier New, 9pt.

Session Preferences

Automatically load last executable on application launch

Default setting is false.

Automatically run last executable on application launch

Default setting is false.

Automatically restore session settings for executables

Default setting is true.

Setting Palm OS Debugger Preferences
Disassembler Preferences

34 Palm OS Debugger Guide

Palm OS Debugger stores sessions settings (a list of symbolic files
and breakpoints) for each executable. The session settings file has
the same filename as the executable file with the file extension PUD.

Using the value true for this setting means that the PUD file for your
executable is loaded automatically when you run the executable.

Automatically restore session window positions

Default setting is true.

Tab size

Default setting is 4.

Disassembler Preferences
To set Disassembler Plug-in preferences, select Disassemblers from
the category tree, and then select 68K or ARM.

68K Preferences
If you are debugging 68K code, set these preferences.

Disassembler engine

Default setting is Palm OS Debugger. The other option is Palm
Debugger.

The Palm OS Debugger disassembler is the recommended
disassembler for Palm OS Debugger users. If you have problems
with the Palm OS Debugger disassembler, however, you can choose
to use the Palm Debugger disassembler, which is the disassembler
from the Palm Debugger tool. (For an explanation of the difference
between Palm OS Debugger and the Palm Debugger, see “How
Does Palm OS Debugger Compare to Palm Debugger?” on page 2.

Uppercase opcodes hex bytes

Default setting is false, which means that alphabetic characters in
hexadecimal opcode bytes are displayed as lowercase letters.

Use the option true to display alphabetic characters in hexadecimal
opcode bytes as uppercase letters.

Setting Palm OS Debugger Preferences
Disassembler Preferences

Palm OS Debugger Guide 35

Uppercase mnemonics operands

Default setting is false, which means that operands in hexadecimal
numbers are displayed as lowercase letters.

Use the option true to display operands in hexadecimal numbers as
uppercase letters.

Show offset values in hex

Default setting is false, which means Palm OS Debugger displays
offsets as decimal numbers.

The hexadecimal value of offsets are often directly visible in the
opcode bytes, so signed decimal numbers is the default display type
for offsets.

Set this preference to true to display offsets as hexadecimal
numbers.

Show immediates values as hex

Default setting is false, which means Palm OS Debugger displays
arithmetic immediates as decimal numbers.

The hexadecimal value of intermediates are often directly visible in
the opcode bytes, so decimal numbers is the default display type for
arithmetic intermediates.

Set this preference to true to display arithmetic immediates as
hexadecimal numbers.

Lookup names for addresses

Default setting is true, which means that if you are branching to
another function, Palm OS Debugger displays the function name
rather than the address.

Set this preference to false for slightly faster performance.

ARM Preferences
If you are debugging ARM code, set these preferences.

Setting Palm OS Debugger Preferences
Download Plug-ins Preferences

36 Palm OS Debugger Guide

Uppercase opcodes

Default setting is false, which means that alphabetic characters in
hexadecimal opcode bytes are displayed as lowercase letters.

Use the option true to display alphabetic characters in hexadecimal
opcode bytes as uppercase letters.

Uppercase operands

Default setting is false, which means that operands in hexadecimal
numbers are displayed as lowercase letters.

Use the option true to display operands in hexadecimal numbers as
uppercase letters.

Show offsets in hex

Default setting is false, which means Palm OS Debugger displays
offsets as decimal numbers.

The hexadecimal value of offsets are often directly visible in the
opcode bytes, so signed decimal numbers is the default display type
for offsets.

Set this preference to true to display offsets as hexadecimal
numbers.

ARM architecture version

Default setting is v4T.

Set this to the ARM architecture version that is appropriate for your
ARM chip. The disassembler needs this information in order to
disassemble the opcodes correctly.

Download Plug-ins Preferences
These preferences are used for debugging with prototype
development boards, and are not used for Palm OS application
debugging.

Setting Palm OS Debugger Preferences
Protocols Preferences

Palm OS Debugger Guide 37

Protocols Preferences
To set Protocols Plug-in preferences, select Protocols from the
category tree, and then select 68K Palm OS Debug Kernel or ARM
Palm OS 5 Debug Nub.

68K Palm OS Debug Kernel Preferences
This is the kernel that talks to Palm OS Emulator or to a 68K device.

Debug target select

Default setting is Palm Device. You can select Poser to indicate Palm
OS Emulator, but note that Palm OS Emulator cannot be used with
ARM-based code.

Communications Plug-in

Default setting is Win32 Serial Communications Plug-in. This is
currently the only supported value if you are connecting to a 68K
device.

If you are connecting to Palm OS Emulator, you should set this
option to Win32 Sockets Communications Plug-in. Make sure the
Sockets communication plug-in preferences are set correctly to
127.0.0.1 on port 2000.

Path to poser

Default setting is to leave this field blank; this preference is optional.

Palm OS Debugger uses this setting to automatically launch
Palm OS Emulator, if Emulator is not already running.

Command line arguments to poser

Default setting is to leave this field blank.

If you are connecting to Palm OS Emulator, you can specify
command line arguments here.

Application Entry Point

Default setting is PilotMain. You can set this to any valid function
name.

Setting Palm OS Debugger Preferences
RTOS Plug-ins Preferences

38 Palm OS Debugger Guide

ARM Palm OS 5 Debug Nub Preferences
These preferences are for connecting to an ARM device’s debug
nub.

Communications Plug-in

Default setting is Win32 Serial Communications Plug-in.

The other option is Win32 Sockets Communications Plug-in.

Log protocol details

Default setting is Log errors to Debug Console. This setting is not
necessary, so you can disable it.

RTOS Plug-ins Preferences
These preferences are used for debugging with prototype
development boards, and are not used for Palm OS application
debugging.

To set real time operating system plug-in preferences, select RTOS
Plug-ins from the category tree, and then select Palm OS 6.0.

Palm OS 6.0 Preferences
These preferences are for process- and thread-aware debugging of
Palm OS Cobalt applications.

Stop on Thread Created

Default setting is false.

Setting this preference to true means Palm OS Debugger suspends
program execution when a new thread is created.

Stop on Thread Faulted

Default setting is true. This setting means that Palm OS Debugger
suspends program execution when a thread is faulted.

Stop on Thread Destroyed

Default setting is false.

Setting Palm OS Debugger Preferences
Runtime Helpers Preferences

Palm OS Debugger Guide 39

Setting this preference to true means Palm OS Debugger suspends
program execution when a thread is destroyed.

Stop on Process Created

Default setting is false.

Setting this preference to true means Palm OS Debugger suspends
program execution when a new process is created.

Stop on Process Destroyed

Default setting is false.

Setting this preference to true means Palm OS Debugger suspends
program execution when a process is destroyed.

Stop on Library Loaded

Default setting is false.

Setting this preference to true means Palm OS Debugger suspends
program execution when a library is loaded.

Stop on Library Unloaded

Default setting is false.

Setting this preference to true means Palm OS Debugger suspends
program execution when a library is unloaded.

Target CPU is XScale

Default setting is true.

Runtime Helpers Preferences
These preferences are used for debugging with prototype
development boards, and are not used for Palm OS application
debugging.

To set Runtime Helpers preferences, select Runtime Helpers from
the category tree, and then select ARM Palm OS.

Setting Palm OS Debugger Preferences
Runtime Helpers Preferences

40 Palm OS Debugger Guide

NOTE: If you change runtime preferences, you may cause an
adverse affect on runtime performance.

ARM Palm OS Preferences
These preferences are for ARM targets.

Enable Palm Runtime Helper

Default setting is false.

For Palm OS Garnet or Palm OS Cobalt, set this to true.

DbgPostLoad func name or address

Default setting is DbgPostLoad. Normally, you should not change
this.

This lets Palm OS Debugger detect where shared libraries are
loaded.

DbgPostUnload func name or address

Default setting is DbgPostUnload. Normally, you should not change
this.

This lets Palm OS Debugger detect where shared libraries are
unloaded.

DbgBreak func name or address

Default setting is HALDbgBreak. Normally, you should not change
this. This is a function that is in a shared library in Palm OS; you can
use it as a breakpoint. It is like a breakpoint that you can compile
into your code.

Binary file 1

Default setting is to leave this field blank.

Binary file 1 address

Default setting is to leave this field blank.

Setting Palm OS Debugger Preferences
Symbolics Preferences

Palm OS Debugger Guide 41

Binary file 2

Default setting is to leave this field blank.

Binary file 2 address

Default setting is to leave this field blank.

Symbolics Preferences
Palm OS Debugger uses the DWARF symbolics format. Select
Symbolics from the category tree, and then select DWARF 1.1 or
DWARF 2.0.

DWARF 1.1 Preferences
Normally, you do not need to change any of these preferences. The
ones you most like may change are Relocate Palm libraries and
Type/Creator section name.

Byte size of FT_char, FT_signed_char, FT_unsigned_char

Default setting is 1. Do not change.

Byte size of FT_short, FT_signed_short, FT_unsigned_short

Default setting is 2. Do not change.

Byte size of FT_integer, FT_signed_integer,
FT_unsigned_integer

Default setting is 4. Do not change.

Byte size of FT_long, FT_signed_long, FT_unsigned_long

Default setting is 4. Do not change.

Byte size of FT_long_long, FT_signed_long_long,
FT_unsigned_long_long

Default setting is 8. Do not change.

Byte size of FT_point, FT_label

Default setting is 4. Do not change.

Setting Palm OS Debugger Preferences
Symbolics Preferences

42 Palm OS Debugger Guide

Byte size of FT_float

Default setting is 4. Do not change.

Byte size of FT_dbl_prec_float

Default setting is 8. Do not change.

Byte size of FT_ext_prec_float

Default setting is 10. Do not change.

Byte size of FT_complex

Default setting is 8. Do not change.

Byte size of FT_dbl_prec_complex

Default setting is 16. Do not change.

Byte size of FT_ext_prec_complex

Default setting is 32. Do not change.

Byte size of FT_void

Default setting is 1. Do not change.

Byte size of FT_boolean

Default setting is 1. Do not change.

Relocate PALM libraries

Default setting is true. This must be set to true in order for Palm OS
Debugger to be able to debug shared libraries.

Type/Creator section name

Default setting is .text. In most cases, you should not change this
setting.

Palm OS Debugger uses this setting with the Type/Creator section
offset setting.

Type/Creator section offset

Default setting is 20. Do not change this setting.

Setting Palm OS Debugger Preferences
Symbolics Preferences

Palm OS Debugger Guide 43

The Type/Creator section offset and Type/Creator section offset
settings tell Palm OS Debugger where to find a shared library’s
type, creator ID, resource, and resource ID information in an ELF
file. Palm OS Debugger uses these settings to process shared library
load and unload notifications, and to enable and disable
breakpoints in a shared library.

Each Palm OS shared library has unique shared library data in the
initial bytes of the code section. By default, the code section in the
ELF file is named .text.

DWARF 2.0 Preferences
The DWARF 2.0 plug-in omits any TAG_member tags that do not
have locations for the members.

Relocate PALM libraries

Default setting is true. This must be set to true in order for Palm OS
Debugger to be able to debug shared libraries.

Type/Creator section name

Default setting is .text. In most cases, you should not change this
setting.

This setting tells Palm OS Debugger where to find a shared library’s
type and creator ID. Each Palm OS shared library has a chunk of
data at the beginning of a certain section; typically, this section is
named *.text.

Type/Creator section offset

Default setting is 20. Do not change this setting.

Omit artificial variables

Default setting is true. This makes the Variables view more compact;
Palm OS Debugger does not display any artificial variables. For
information on the Variables view, see “Variables View” on page 64.

Omit variables that start with

Default setting is to leave this field blank. To not to display any
variables that start with a particular string, specify that string here.

Setting Palm OS Debugger Preferences
Symbolics Preferences

44 Palm OS Debugger Guide

Palm OS Debugger Guide 45

4
Running Palm OS
Debugger
This chapter describes each of the Palm OS Debugger windows and
discusses how to use them. It covers the following topics:

• An overview of Palm OS Debugger functionality. See “Palm
OS Debugger Overview” on page 46.

• Instructions for getting started. See “Getting Started” on
page 47.

• A detailed discussion of each of the Palm OS Debugger
windows:

– “Source View” on page 48

– “Files View” on page 55

– “Breakpoints View” on page 58

– “Registers View” on page 62

– “Variables View” on page 64

– “Global Variables View” on page 66

– “Memory View” on page 67

– “Processes View” on page 69

– “Stack Trace View” on page 70

– “Expressions View” on page 70

– “Profiler View” on page 73

– “STDIO Console” on page 73

– “Debug Console” on page 75

Running Palm OS Debugger
Palm OS Debugger Overview

46 Palm OS Debugger Guide

Palm OS Debugger Overview
You can use Palm OS Debugger to:

• View information about applications and their source files.

• Set breakpoints.

• Display a list of registers and their values.

• View information about variables.

• View information about memory address locations and their
contents.

• View processes that Palm OS Debugger knows about.

• View the stack trace.

• Evaluate C expressions.

• View standard input and output operations (such as debug
messages) in an STDIO console.

• Interact with your debugging session in a command line
environment.

You can open an instance any of the Palm OS Debugger tabs in its
own separate window. To do this, select Windows in the Palm OS
Debugger menu bar, and then select a view from the list of views.

Running Palm OS Debugger
Getting Started

Palm OS Debugger Guide 47

Getting Started

NOTE: While you are following the steps described here,
whenever Palm OS Debugger displays a dialog asking "Do you
want to save modified preferences?" you should click Yes.

Modifying Preferences
To modify Palm OS Debugger preferences, follow the instructions in
Chapter 3, “Setting Palm OS Debugger Preferences,” on page 21.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

48 Palm OS Debugger Guide

Using the Palm OS Debugger Windows
This section explains how to use each of the Palm OS Debugger
windows (also called tabs).

Source View
The source view shows you your application source file in the
specified mode: either C/C++, Assembly, or mixed. In the source
view, you can read your source code and graphically view any
breakpoints in your code.

The source view pane is the bottom pane of every view described
below, and the user interface of the source view is maintained across
every view.

Note that, by default, the source view shows the current location in
the source based on the program counter. But the content and
current location can be changed in several ways:

• When you select a breakpoint in the breakpoint window, the
source view shows the breakpoint you just selected.

• When you select an item from the call stack, the source view
shows the item you just selected.

• When you select a file in the files view, the source view
shows you the selected file.

• When the program counter is within an area of memory
where you have no symbolic information available, the
source view shows an assembly view of the code.

If you change the file view, you can get back to the current program
counter location by using the Goto PC command. (To view the
menu, right-click in the source view window.)

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 49

Figure 4.1 Source View

Source View User Interface

This pane is available within all views in the debugger. When you
open Palm OS Debugger, the pane displays the contents of the file
selected in the Files View. When you are debugging, the pane shows
the current program counter location in the source or assembly. It is
always the lowest pane, but you can resize the pane.

The lower pane in the source view is known as the source view
pane. It is a resizable pane that displays the contents of the selected
source file; if no source file is selected in the files view, then this
pane is empty. In this pane, you can use the following functions:

Running Palm OS Debugger
Using the Palm OS Debugger Windows

50 Palm OS Debugger Guide

• View your source code.

• Use Find, Find Next, and Find Previous to perform searches.

• Select and Copy text to the clipboard.

• Set and clear breakpoints.

• Move to the next code line where you can place a breakpoint,
or back up to the next prior code line where you can place a
breakpoint.

Setting Breakpoints in the Source View

The source view uses gray squares in the left margin to indicate
where you can set a breakpoint. You can only set breakpoints on
code lines that have a gray square in the left margin.

TIP: If your breakpoint boxes are not lining up or if they appear
to be on incorrect lines such as comment lines, check that your
source file and symbolic file are both up-to-date.

• To set a breakpoint, click the gray square.

– If the symbolic file containing the new breakpoint has not
yet been loaded, then a white dot appears indicating that
the breakpoint is set but unresolved. In the breakpoints
view, the status for this breakpoint is listed as
“Unresolved.”

– If the symbolic file has already been loaded, then a red
dot appears indicating that the breakpoint is both set and
enabled. In the breakpoints view, the status for this
breakpoint is listed as “Enabled.”

• To run the code up to a breakpoint, SHIFT-click a gray square
that shows a red dot.

• To run to a given source line without setting a permanent
breakpoint, SHIFT-click that source line’s gray box to set a
“one time” breakpoint. This function is handy for getting out
of long loops without having to set a breakpoint, run to the
breakpoint, and then clear the breakpoint.

• To disable a breakpoint, CTRL-click a gray square that shows
a red dot. The red dot changes to a white dot, indicating that

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 51

the breakpoint is set but disabled. In the breakpoints view,
the status for this breakpoint is listed as “Disabled.”

• To clear a breakpoint, click a gray square that shows a white
or a red dot. The dot disappears, indicating that the
breakpoint has been cleared.

Note that each line of C source corresponds to a range of possibly
discontinguous addresses. When you set a breakpoint in C source
mode, the breakpoint is set at the beginning of the range of
addresses.

In mixed mode or assembly mode, you can set one or more
breakpoints within the range of addresses that correspond to one
single line in C source. When you view these breakpoints in C
source mode, the graphical representation of the breakpoint dots
may be changed to indicate multiple breakpoints for a single line in
the C source:

• For a breakpoint within the range for a source line but not at
the beginning of the range, the dot is shown in the upper left-
hand corner of the gray square.

• For multiple breakpoints corresponding to a single source
line, the breakpoints are shown as two smaller, overlapping
dots.

TIP: When the source view is the active view, you can use the
mouse scroll wheel to step through your code while debugging.
Click in the source view to make sure it is the active view.

- Use CTRL+MWHEEL_DOWN to step over
- Use CTRL+SHIFT+MWHEEL_DOWN to step into
- Use CTRL+MWHEEL_UP to step out

Source View Context Menu

You can use the following functions from the pop-up menu
(displayed with the right mouse button) in the source view:

Source

Select Source to view the original source code for the current file.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

52 Palm OS Debugger Guide

Mixed for File

Select Mixed for File to view the original source mixed with the
assembly version for the entire address range corresponding to the
current source file being displayed.

Note that when you select this option, Palm OS Debugger may take
some time to update to the source view for a large source file.

Mixed for Function

Select Mixed for Function to view the original source mixed with
the assembly version for the current function. The original source is
shown for other functions.

Mixed for Source Line

Select Mixed for Source Line to view the original source mixed
with the assembly version for the current source line only. The
original source is shown for all other lines.

Disassembly

Select Disassembly to view the disassembly version of the current
file.

Note that when you select this option, Palm OS Debugger may take
some time to update to the source view for a large source file.

Return to Current PC

Returns you to the location specified by the current program
counter data.

Disassemble

Opens a dialog box asking you for the address of the code to
disassemble. This function disassembles a raw address range
starting from the value you specified in the dialog box. Palm OS
Debugger initializes the starting address to the current address
range for the file being disassembled.

You specify the disassemble range as a standard ANSI C string in
one of the following ways:

• Using a low address and a high address. For example, if you
specify the string "0x8000-0x9000", Palm OS Debugger
disassembles the address range 0x00008000 to
0x00009000.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 53

• Using a starting address and a size. For example, if you
specify the string "0x8000+0x1000", Palm OS Debugger
disassembles the address range 0x00008000 to
0x00009000.

• Using a starting address. If you don’t specify a size for the
disassemble range, then Palm OS Debugger uses the most
recently specified size, or uses the default size of 256 bytes if
you have never specified a size.

When you click Enter, Palm OS Debugger disassembles the entire
file up to the upper bound of the disassembler.

Set Disassembler

Changes the disassembler that is being used to disassemble the
current source range when in mixed or disassembly view modes.
Palm OS Debugger attempts to identify the correct disassembler,
but you can set it manually when Palm OS Debugger is unable to
determine the correct disassembler.

This function allows you to choose between the disassembler plug-
ins you have installed. Palm OS Debugger ships with 68K, ARM,
and Thumb disassemblers.

Set Breakpoint at Address

Sets a breakpoint at an absolute address. This function displays a
dialog asking you for the address at which to set the breakpoint.
Palm OS Debugger attempts to resolve this address to a source file
and line number.

If Palm OS Debugger is able to resolve the address, it stores the
breakpoint as a source file and line number breakpoint. If Palm OS
Debugger is not able to resolve the address, then the breakpoint is
stored as an absolute addressed breakpoint.

Set Breakpoint at Function

Sets a breakpoint at a function. You can either use a dialog to enter
the name of the function, or select a function name from a list.

If you use the dialog, you can enter the name of the function in one
of two ways:

• As a simple function name. Palm OS Debugger searches the
symbolic files sequentially until it finds a matching function
name.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

54 Palm OS Debugger Guide

• As a symbolic file and function name combination. For
example, if you enter symfilename.ext(funcName), then
Palm OS Debugger sets a breakpoint at the function
funcName in the symbolic file symfilename.ext. The
symbolic file extension is optional; you can alternatively
enter the example above as symfilename(funcName).

If Palm OS Debugger is unable to find the specified function, then it
displays an error message.

If you use the function name list, you simply select the function
from the list. By default, the function name list is in source file order
(the order in which the functions appear in the source file). To sort
the function name list in alphabetical order, hold down the shift key
before displaying the pop-up menu.

Set Breakpoint at Cursor

Sets a breakpoint in the source view pane at the current cursor
location. (This menu item is available when the selection caret is on
a source line that has a breakpoint gray box on it.)

Run to Cursor

Sets a temporary breakpoint in the source view pane at the current
cursor location, and runs to the cursor location. The breakpoint is
cleared at the next stop of program execution.

Set PC at Cursor

Sets the program counter to the current cursor location in the source
view pane.

Goto PC

Takes you to the location in source that corresponds with the current
contents of the program counter.

Goto Function

Displays a list of function names in the program. Select a function
name to move the cursor location in the source view pane to the
beginning of that function.

By default, the function name list is in source file order (the order in
which the functions appear in the source file). To sort the function
name list in alphabetical order, hold down the shift key before
displaying the pop-up menu.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 55

Show Line Numbers

For source and mixed modes, displays line numbers in the margin
to the left of breakpoint boxes.

Lookup Address

Opens a dialog box asking you for an address that you are looking
up. If the address you enter is within the address range for a source
file, then that source file is displayed.

Files View
The Files view is the first tab in the user interface, and it is displayed
in the upper pane of the user interface. The Files view shows all
currently loaded symbolic files.

Expand a symbolic file to display a list of source files that have
debugging information. Use the address range information for each
symbolic and source file to manually identify which symbolic file
and source file an arbitrary address corresponds to.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

56 Palm OS Debugger Guide

Figure 4.2 Files View

Files View User Interface

The files view pane is a resizable pane that displays the filenames,
paths, low PC value, and high PC value for the application in a table
format. By clicking on one of the column headings, you can sort the
table by that value.

When the files view is initially displayed, each symbolic file is
collapsed. To expand the contents of a symbolic file, click on the
plus sign next to the symbolic file’s filename. The contents are the
names of the files that have debugging information.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 57

When you click on a filename, the source code for that file is
displayed in the Source View.

When you double-click on a filename, Palm OS Debugger tries to
open the file in a new window. If Palm OS Debugger cannot find the
file, then Palm OS Debugger displays a dialog box so you can locate
the source file in another directory.

Files View Context Menu

You can use the following functions from the pop-up menu
(displayed with the right mouse button) in the files view:

Open File in New Window

If you have a specific file selected, this option becomes available in
the context menu. This option lets you display the file in a separate
window.

Remove Symbolic File

To remove a symbolic file from the current debug project, select the
symbolic file’s filename and then select Remove Symbolic File from
the pop-up menu. If you set any breakpoints in the symbolic file,
Palm OS Debugger removes the breakpoints before removing the
symbolic file from the project.

Change Path

Opens a dialog box so you can find the source file in a different
directory. If the path of your source file is out of date with the
symbolic file, modify the path to your source file by selecting the
filename, and then selecting Change Path from the pop-up menu.
Use this option when a file is located in a different directory but still
has the same name and extension.

Change Filename

Opens a dialog box so you can select a different source file. If the
path and filename of your source file is out of date with the
symbolic file, modify the path and filename to your source file by
selecting the filename, and then selecting Change Filename from
the pop-up menu. Use this option when the file has a different name
or extension, and is not just located in a different directory.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

58 Palm OS Debugger Guide

Revert to Original Path

Sets the path information back to the path information that is stored
in the symbolic file. If you have changed the filename using Change
Filename, but selected an incorrect source file, you can restore the
original name by selecting the filename and then selecting Revert to
Original Path from the pop-up menu.

Show All Files

By default, the Files view only shows files that contain code. To
view other files in the files view, check the Show All Files menu.
This allows you to see other files which are listed in the symbolic
file, such as header files.

Copy

Copies the text from a tree item, and all its available children, to the
operating system clipboard. Each tree item is formatted to a
separate line with the column text tab-separated.

Copy All

Copies the text for all visible tree items to the operating system
clipboard. Each tree item is formatted to a separate line with the
column text tab-separated.

Breakpoints View
This view shows the list of breakpoints set in the application you are
debugging.

NOTE: You set breakpoints in the source view. For details, see
“Setting Breakpoints in the Source View” on page 50.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 59

Figure 4.3 Breakpoints View

Breakpoints View User Interface

The breakpoints view displays the following information, displayed
in a table format. By clicking on any column heading, you can sort
the table by that value in either ascending order or descending
order. Column headings are:

• Status – The current status of the breakpoint. The status is
one of the following:

– Unresolved: The breakpoint is set, but the symbolic file
containing the breakpoint has not yet been loaded. In the
source view, the status for this type of breakpoint is
shown with a white dot.

– Enabled: The breakpoint is set and the symbolic file
containing the breakpoint has been loaded. The
breakpoint reflects an actual address. In the source view,
the status for this type of breakpoint is shown with a red
dot.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

60 Palm OS Debugger Guide

– Disabled: The breakpoint address is resolved, but the
breakpoint is not active. In the source view, the status for
this type of breakpoint is shown with a white dot.

– Unknown: If you try to set a breakpoint while a debug
process is running, Palm OS Debugger may temporarily
set the status in the breakpoints view to Unknown.

• Function – The function in which the breakpoint can be
found.

• Line – The line in the source file.

• Filename – The filename of the source file.

• Path – The path to the source file.

• Symbolic File – The associated symbol file.

• Condition – If this is a conditional breakpoint, the condition is
displayed here.

Conditional Breakpoints

To add a conditional breakpoint:

• Select the desired line in the breakpoints view. The selected
line is highlighted.

• Double-click the section of the highlighted line that runs
through the Condition column (under the heading
“Condition” in the table).

• Palm OS Debugger opens a text box where you add a
condition.

When Palm OS Debugger hits your conditional breakpoint, a dialog
box opens.

Use Palm OS Debugger’s C expression parser to write conditions.
For detailed information, see “Expressions View” on page 70.

Breakpoints View Context Menu

You can use the following functions from the pop-up menu
(displayed with the right mouse button) in the breakpoints view:

Enable Breakpoint

Enables a previously disabled breakpoint at a specific address.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 61

Disable Breakpoint

Disables a breakpoint at a specific address.

Clear Breakpoint

Clears a breakpoint at a specific address.

Enable All Breakpoints

Palm OS Debugger attempts to enable all disabled and unresolved
breakpoints. Any unresolved breakpoints that Palm OS Debugger
can not set remain unresolved; any disabled breakpoints that Palm
OS Debugger can not enable become unresolved.

Disable All Breakpoints

Disables all currently set breakpoints.

Clear All Breakpoints

Clears all currently set breakpoints.

Set Breakpoint at Address

Sets a breakpoint at an absolute address. This function displays a
dialog asking you for the address at which to set the breakpoint.
Palm OS Debugger attempts to resolve this address to a source file
and line number.

If Palm OS Debugger is able to resolve the address, it stores the
breakpoint as a source file and line number breakpoint. If Palm OS
Debugger is not able to resolve the address, then the breakpoint is
stored as an absolute addressed breakpoint.

Set Breakpoint at Function

Sets a breakpoint at a function. This function displays a dialog
asking you for the name of the function at which to set the
breakpoint. You can enter the name of the function in one of two
ways:

• As a simple function name. Palm OS Debugger searches the
symbolic files sequentially until it finds a matching function
name.

• As a symbolic file and function name combination. For
example, if you enter symfilename.ext(funcName), then
Palm OS Debugger sets a breakpoint at the function

Running Palm OS Debugger
Using the Palm OS Debugger Windows

62 Palm OS Debugger Guide

funcName in the symbolic file symfilename.ext. The
symbolic file extension is optional; you can alternatively
enter the example above as symfilename(funcName).

If Palm OS Debugger is unable to find the specified function, then it
displays an error message.

Copy

Copies the text from a tree item, and all its available children, to the
operating system clipboard. Each tree item is formatted to a
separate line with the column text tab-separated.

Copy All

Copies the text for all visible tree items to the operating system
clipboard. Each tree item is formatted to a separate line with the
column text tab-separated.

Registers View
This view displays the list of registers and their values. It has
bitwise text mnemonics for registers such as the CPSR and SPSR, to
mimic the ARM debugger.

Registers View User Interface

You can sort the view by the name and by the value, in both
ascending or descending order.

To set the contents of a register, you can double-click on the value of
a register, and type in a new value. This value gets reflected
immediately in the debugging session.

In general, Palm OS Debugger interprets the value according to the
semantics of the ANSI C standard function strtol (or strtod for
floating point numbers).

• If the value starts with a number (1 through 9) or with a
hyphen (“-”), then Palm OS Debugger interprets the value as
a decimal number.

• If the value starts with “0x” characters, then Palm OS
Debugger interprets the value as a hexadecimal number.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 63

• If the value starts with “0” followed by the numbers 1
through 7, then Palm OS Debugger interprets the value as an
octal number.

• If the value contains a decimal point (“.”), then Palm OS
Debugger interprets the value as one of the IEEE 754 (floating
point number) formats, depending on the size of the register.

• If the value starts with “0b” characters followed by zeroes or
ones, then Palm OS Debugger interprets the value as a binary
number.

You can enter any valid numerical string; you do not need to use
quotation marks. If the string cannot be parsed according to the
above rules, Palm OS Debugger interprets it based on the format of
the previous value.

For example, say that a register's value is "0x11223344" and you
change its value to "be": Palm OS Debugger attempts to parse the
value based on the rules described above. But since none of the rules
fit, Palm OS Debugger then parses the string in hexadecimal format
because it was originally in hexadecimal format.

If Palm OS Debugger is unable to determine the correct format of
the string, then the register’s value remains unchanged. If you
specify an out-of-range string, the value also remains unchanged.

Registers View Context Menu

You can use the following functions from the pop-up menu
(displayed with the right mouse button) in the register view:

NOTE: If an individual register is selected, then options selected
in the context menu apply only to that register. If a group of
registers is selected, then options selected in the context menu
apply to all registers in that group.

Format Types

You can display registers in the following formats:

• ASCII Integer

• Binary

• Boolean

Running Palm OS Debugger
Using the Palm OS Debugger Windows

64 Palm OS Debugger Guide

• Char

• Decimal (Signed)

• Decimal (Unsigned)

• Fixed 50/50 (Signed)

• Fixed 50/50 (Unsigned)

• Fixed 75/25 (Signed)

• Fixed 75/25 (Unsigned)

• Float

• Hex

• Hex Byte Stream

• Hex with Decimal (Signed)

• Hex with Decimal (Unsigned)

• String (C)

• String (Pascal)

Format Changes Are Global

Select this setting to permanently apply changes to a register for the
duration of the debug session. If you create any new register views,
they have the same format.

Copy

Copies the text from a tree item, and all its available children, to the
operating system clipboard. Each tree item is formatted to a
separate line with the column text tab-separated.

Copy All

Copies the text for all visible tree items to the operating system
clipboard. Each tree item is formatted to a separate line with the
column text tab-separated.

Variables View
This view displays information about variables: the variables’
names, the values of the variables, the types of the variables, the
scope of the variables, and the variables’ locations. If a variable is

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 65

out of scope, then Palm OS Debugger displays the string “ERROR”
for that variable.

Variables View User Interface

You can sort the table of data in ascending or descending order by
clicking on any of the column titles. To change the value of a
variable, double-click on the value of a variable and type in a new
value. The new value gets reflected immediately in the debugging
session.

• If the value starts with a number (1 through 9) or with a
hyphen (“-”), then Palm OS Debugger interprets the value as
a decimal number.

• If the value starts with “0x” characters, then Palm OS
Debugger interprets the value as a hexadecimal number.

• If the value starts with “0” followed by the numbers 1
through 7, then Palm OS Debugger interprets the value as an
octal number.

• If the value contains a decimal point (“.”), then Palm OS
Debugger interprets the value as an IEEE floating point
number.

• If the value starts with “0b” characters followed by zeroes or
ones, then Palm OS Debugger interprets the value as a binary
number.

You can enter any valid numerical string; you do not need to use
quotation marks. If the string cannot be parsed according to the
above rules, Palm OS Debugger interprets it based on the format of
the previous value.

For example, say that a variables's value is "0x11223344" and you
change its value to "be": Palm OS Debugger attempts to parse the
value based on the rules described above. But since none of the rules
fit, Palm OS Debugger then parses the string in hexadecimal format
because it was originally in hexadecimal format.

If Palm OS Debugger is unable to determine the correct format of
the string, then the variables’s value remains unchanged. If you
specify an out-of-range string, the value also remains unchanged.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

66 Palm OS Debugger Guide

Variables View Context Menu

You can use the following functions from the pop-up menu
(displayed with the right mouse button) in the variables view:

Show File Globals

When this command is checked, the file global variables are shown.

Format Types

You can display variables in various formats, similar to the way you
can display registers in various formats (see “Format Types” on
page 63). Additionally, you can show enumerated types as their
enumerated strings.

Format Elements As

When you select an array name, you can use the Format Elements
As command. This command displays all elements of an array in
the same format. You can display the arrays of characters as strings.

Copy

Copies the text from a tree item, and all its available children, to the
operating system clipboard. Each tree item is formatted to a
separate line with the column text tab-separated.

Copy All

Copies the text for all visible tree items to the operating system
clipboard. Each tree item is formatted to a separate line with the
column text tab-separated.

Global Variables View
This view displays the global variable name, the value of the
variables, the type of variable, the variable location.

Global Variables User Interface

You can sort the view by clicking on any of the titles to sort in
ascending or descending order. Additionally, you can double click
on the value of a variable and type in a new value. The new value
gets reflected immediately in the debugging session.

You can edit either the value or location of global variables in the
same way that you can edit variables (see Variables View).

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 67

Global Variables Context Menu

You can use the following functions from the pop-up menu
(displayed with the right mouse button) in the global variables
view:

Show All Globals

When this command is checked, all global variables are shown.

Format Types

You can display variables in various formats, similar to the way you
can display registers in various formats (see “Format Types” on
page 63). Additionally, you can show enumerated types as their
enumerated strings.

Format Elements As

When you select an array name, you can use the Format Elements
As command. This command displays all elements of an array in
the same format. You can display the arrays of characters as strings.

Copy

Copies the text from a tree item, and all its available children, to the
operating system clipboard. Each tree item is formatted to a
separate line with the column text tab-separated.

Copy All

Copies the text for all visible tree items to the operating system
clipboard. Each tree item is formatted to a separate line with the
column text tab-separated.

Memory View
This view displays memory address locations and their contents
(memory dumps). You can display memory either using the built-in
memory display function or using any memory disassembler plug-
in.

You specify the absolute start memory address as a standard
ANSI C string representing a hexadecimal number (for example,
"0x8000").

Running Palm OS Debugger
Using the Palm OS Debugger Windows

68 Palm OS Debugger Guide

Memory View User Interface

• You can sort the view by clicking on any of the titles to sort in
ascending or descending order, where applicable.

• By double-clicking on a specific address, range of data, or
displayed character string, you can type in a new value and
press ENTER to save the changed value.

Memory View Context Menu

You can use the following functions from the pop-up menu
(displayed with the right mouse button) in the memory view:

Format

Sets the data type format to be used for the displayed data.

Bytes per Column

Sets the number of bytes of data to be displayed in each column.

Bytes per Row

Sets the number of bytes of data to be displayed in each row.

Uppercase Numbers

Select this setting to show hexadecimal numbers with uppercase
letters. For example, with this setting, the number 0xabcdef would
be displayed as 0xABCDEF.

Show Base Prefix

Select this setting to display the base prefix for the number being
displayed. This setting shows the “0x” prefix in front of
hexadecimal numbers and the “0b” prefix in front of binary
numbers. For example, the hexadecimal number 1122aabb
displays as 0x1122aabb if this option is selected, but displays as
1122aabb if this option is not selected.

68K Disassembler

Displays the 68K Disassembler’s various modes. Selecting one
disassembles the selected address.

ARM Disassembler

Displays the ARM Disassembler’s various modes. Selecting one
disassembles the selected address.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 69

Number Disassembler

Displays the various modes that the Number disassembler has.

Thumb Disassembler

Displays the various modes that the Thumb disassembler has.
Selecting one disassembles the selected address.

Copy

Copies the text from a tree item, and all its available children, to the
operating system clipboard. Each tree item is formatted to a
separate line with the column text tab-separated.

Copy All

Copies the text for all visible tree items to the operating system
clipboard. Each tree item is formatted to a separate line with the
column text tab-separated.

Processes View
This view displays processes that Palm OS Debugger knows about.
For example, Palm OS Debugger notifies you when a thread faults
or has an uncaught exception. To view the faulted thread, double-
click on the thread in the Processes view. The thread name is
displayed next to the thread ID (in Palm OS Cobalt, this is the four-
character code for the thread). Double-clicking on a thread tree item
entry shows the thread's context in the Source view window and
updates all views.

Processes View User Interface

You can sort the view by clicking on any of the titles to sort in
ascending or descending order. You can sort by Name or Value.

Processes View Context Menu

You can use the following functions from the pop-up menu
(displayed with the right mouse button) in the processes view:

Remove All Added Columns

Removes all added columns.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

70 Palm OS Debugger Guide

Copy

Copies selected text in the current window into the operating
system clipboard.

Copy All

Copies all text in the current window into the operating system
clipboard.

Stack Trace View
This view displays the stack, allowing you to see the previous calls.

Stack Trace View User Interface

You cannot sort the stack trace view.

Stack Trace View Context Menu

You can use the following functions from the pop-up menu
(displayed with the right mouse button) in the stack trace view:

Copy

Copies the text from a tree item, and all its available children, to the
operating system clipboard. Each tree item is formatted to a
separate line with the column text tab-separated.

Copy All

Copies the text for all visible tree items to the operating system
clipboard. Each tree item is formatted to a separate line with the
column text tab-separated.

Expressions View
This displays a text window where you can type a C expression and
have it evaluated. You can type in an expression and Palm OS
Debugger evaluates it and displays the result. The expression can
contain simple variables (no array members and no struct, union, or
class members), registers, memory dereferences, and constants.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 71

The expression parser supports the following operators with full C
operator precedence (topmost is highest precedence).

All operations are supported for SInt32, UInt32, SInt64, UInt64, and
4-byte floats. Constant numbers can be in expressions and are
entered as they would be in a C program. Integers are SInt32 by
default. Integers can be unsigned by following them with a U or UL
(for example, 3u). 64-bit integers can be used in expressions by
typing a hex number that is too large for a 32-bit value (for example,
0x000000001). Floats can be entered in any format and are assumed
to be 4-byte floats by default.

Expressions can currently access debug variables by typing the
variable name in the expression The expression parser can use

Table 4.1 Operators Supported by the C Expression Parser

Expression How It Is Read

() left to right

! ~ ++ -- right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

?: right to left

= += -= *= /= %= &= ^=
|= <<= >>=

right to left

Running Palm OS Debugger
Using the Palm OS Debugger Windows

72 Palm OS Debugger Guide

simple variables and does not support members of structs, unions
or classes. Registers can be accessed as @<reg_name> (for example,
@R0).

The register name is case sensitive. The register name must match
the exact name that is found in the register views for it to evaluate
correctly. In addition, the register must be valid at the time of the
expression being evaluated; the parser cannot read registers prior to
connecting.

The expression parser also has built-in expression variables that can
be defined and are global to all of Palm OS Debugger. These
variables are defined as C-tokens pre-pended with a $ character (for
example, $x); note the similarity to Perl variables.

Expressions Console User Interface

You can sort the view by clicking on any of the titles to sort in
ascending or descending order. You can sort by Expression, Result,
Hex, or Type.

Table 4.2 Sample Expressions

Expression What It Does

2 << 20 Simple constant expression

x == 3 Find out if the debug variable x
equals 0x00000003

myFloat == 2.0 Find out if myFloat is 2.0
(0x40000000)

$foo = 1024 Set expression glob var to 1024

$bar = ++$foo Set $bar to ++ of $foo

$foo print the value of $foo

@R0 get the value of the register R0

(@CPSR & 0x1FUL) ==
0x10UL

Find out if we are in user mode

(@CPSR & (1 << 5)) Find out if we are in Thumb
mode

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 73

Expressions Context Menu

You can use the following function from the pop-up menu
(displayed with the right mouse button) in the expressions view:

New Expression

Provides an input area (in the Expression column) where you can
type an expression. The expression parser evaluates the expression
and displays the result in the Result column.

Delete Expression

Deletes the selected expression.

Copy

Copies the text from a tree item, and all its available children, to the
operating system clipboard. Each tree item is formatted to a
separate line with the column text tab-separated.

Copy All

Copies the text for all visible tree items to the operating system
clipboard. Each tree item is formatted to a separate line with the
column text tab-separated.

Profiler View
This view is not used for application development.

STDIO Console
The STDIO Console is a read-only text window where your
application can conduct standard input and output operations. The
STDIO Console is typically used for output of debug messages.

To write your program so that it uses the STDIO Console, use the
AdnDebugMessage() and AdnDebugEnableSet() functions
described in Chapter 6, “AdnDebug Manager,” on page 95.

The STDIO Console window is colored grey to indicate that the
window is read-only. If an input operation such as scanf is
necessary, the window temporarily turns white to indicate input is
necessary to continue execution.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

74 Palm OS Debugger Guide

STDIO Console User Interface

In this pane, you can use the following functions:

• Find and Find Next

• Find Previous

• Select and Copy text to the clipboard

STDIO Context Menu

You can use the following functions from the pop-up menu
(displayed with the right mouse button) in the STDIO view:

Copy

Copies the text from a tree item, and all its available children, to the
operating system clipboard. Each tree item is formatted to a
separate line with the column text tab-separated.

Copy All

Copies the text for all visible tree items to the operating system
clipboard. Each tree item is formatted to a separate line with the
column text tab-separated.

Select All

Selects all of the text in the current window.

Clear

Clears the current console.

Echo Input

Select this setting to indicate that the input typed should appear in
the console as text.

Sync on EOL

Select this setting to force the console buffer to flush itself when it
detects an end-of-line character. This setting allows you to see
console information more quickly.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 75

Debug Console
The debug console is a command line interface, allowing you to
interact with your debugging session in a command line
environment.

Debug Console User Interface

The user interface of the debug console is a command line interface.
The percentage sign, %, is the command line prompt.

Debug Console Commands

Command Arguments

Alias [<NewAlias> <actualCommand>]

This allows you to make a new alias of an
actual command. Typing this command
without any parameters displays all currently
assigned aliases.

Bpclear [<address> <functionname>
<symbolname>
<symfile(functionname)>]

Clears a breakpoint at an address, function, or
symbol.

Bpset [<address> <functionname>
<symbolname>
<symfile(functionname)>]

Sets a breakpoint at an address, function, or a
symbol.

Clear Clears the console contents.

Find [<function name> <symbol name>
symfile(function name)>
<symfile(symbol name)>]

Finds a function or symbol address and size
from symbolics.

Help [<command name>]

Running Palm OS Debugger
Using the Palm OS Debugger Windows

76 Palm OS Debugger Guide

Displays help for all commands or for a specific
command.

Lookup <absolute address>

Lets you look up an address in symbolics and
see to which symbolic file, source file and
source line, function, and scope the address
pertains.

Mem [<absolute address> [numbytes=32]]

Displays memory at an absolute address.

Prot Sends commands to the debugger protocol.

To find out what protocol interface commands
are supported, use this command:
prot help

Prot nub Sends commands to the debugger protocol nub.

To find out what protocol nub commands are
supported, use this command:
prot nub help

Rename <old command name> <new command
name>

Renames a command.

Setsym <sym file name>

Sets the current symbolic file for 'sym'
commands

sym <varies based on symbolic plug-in
interface>

Sends a command down to the current
symbolic file's symbolic plug-in interface

Debug Console Context Menu

You can use the following functions from the pop-up menu
(displayed with the right mouse button) in the debug console view:

Running Palm OS Debugger
Using the Palm OS Debugger Windows

Palm OS Debugger Guide 77

Copy

Copies selected text in the current window into the operating
system clipboard.

Paste

Pastes the contents of the operating system clipboard into the
current window.

Select All

Selects all of the text in the current window.

Clear

Clears the current console

Echo Input

Select this setting to indicate that the input typed should appear in
the console as text.

Sync on EOL

Select this setting to force the console buffer to flush itself when it
detects an end-of-line character. This setting allows you to see
console information more quickly.

Running Palm OS Debugger
Using the Palm OS Debugger Windows

78 Palm OS Debugger Guide

Palm OS Debugger Guide 79

5
Palm OS Debugger
Menu Reference
This chapter provides reference information describing each menu
command in Palm OS Debugger.

Palm OS Debugger Menu Reference Overview
The Palm OS Debugger menus include:

• “File” on page 79

• “Edit” on page 81

• “View” on page 84

• “Target” on page 85

• “Control” on page 88

• “Window” on page 89

• “Help” on page 92

File
Use the File menu, shown in Figure 5.1, to perform actions related
to the current file you are debugging.

Palm OS Debugger Menu Reference
File

80 Palm OS Debugger Guide

Figure 5.1 File Menu

Open
Use the Open menu to open a new Palm OS Debugger window
with an existing target file.

Save
Use the Save menu to save the current window’s contents to a file.
This menu item cannot be used with a debug target file (PRC or ELF
file).

Recent File List
Palm OS Debugger adds each open debug target to the File menu,
in chronological order, so that you can select recently used files
when starting a new debug session.

The list shows the short filenames, but the path to each file is
displayed in the message area at the bottom of the Palm OS
Debugger window.

Exit
Use the Exit menu to exit Palm OS Debugger.

Palm OS Debugger Menu Reference
Edit

Palm OS Debugger Guide 81

Edit
Use the Edit menu, shown in Figure 5.2, to perform standard editing
functions, to search for text strings, to move through the
breakpoints, and to change keyboard settings and debugger
preferences.

Figure 5.2 Edit Menu

Undo
Use the Undo menu to undo the previously executed edit
command.

Cut
Use the Cut menu to delete the currently selected text, copying the
selected text into the operating system clipboard.

Copy
Use the Copy menu to copy selected text in the current window into
the operating system clipboard.

Palm OS Debugger Menu Reference
Edit

82 Palm OS Debugger Guide

Paste
Use the Paste menu to copy text from the clipboard into the current
edit window.

Find
Use the Find menu to search for a text string in a window.

Find next
Use the Find next menu to look for a text string in a window using
an advance search direction (searching forward from the current
position).

Find previous
Use the Find previous menu to look for a text string in a window
using a reverse direction search (searching backwards from the
current position).

Next breakpoint
Use the Next breakpoint to jump to the next code line where you
can place a breakpoint in the source window.

Previous breakpoint
Use the Previous breakpoint menu to jump back to the next prior
code line where you can place a breakpoint in the source window.

Key Bindings
Use the Key Bindings menu to display the Key Bindings Editor,
shown in Figure 5.3.

Palm OS Debugger Menu Reference
Edit

Palm OS Debugger Guide 83

Figure 5.3 Key Bindings Editor Dialog

Preferences
Use the Preferences menu to display the Debugger Preferences
dialog box, shown in Figure 5.4.

Palm OS Debugger Menu Reference
View

84 Palm OS Debugger Guide

Figure 5.4 Debugger Preferences Dialog Box

View
Use the View menu, shown in Figure 5.5, to indicate whether Palm
OS Debugger should show the toolbars or the status bar.

Figure 5.5 View Menu

Palm OS Debugger Menu Reference
Target

Palm OS Debugger Guide 85

Main Toolbar
Use the Main Toolbar menu to hide or show the icons in the toolbar
at the top of the main window.

Window Toolbar
Use the Window Toolbar menu to hide or show the toolbar icons for
the Window items.

Status Bar
Use the Status Bar menu to hide or show the status information at
the bottom of the main window.

Target
Use the Target menu, shown in Figure 5.6, to connect and
disconnect from a debug target, to use a symbolics file, or to save
and load memory values.

Figure 5.6 Target Menu

Connect
Use the Connect menu to connect the Palm OS Debugger with a
debug target.

Palm OS Debugger Menu Reference
Target

86 Palm OS Debugger Guide

Disconnect
Use the Disconnect menu to disconnect the Palm OS Debugger
from a debug target.

Append Symbolics
A symbolics file is a file containing information that Palm OS
Debugger needs in order to display the source code that
corresponds to your object code.

Use the Append Symbolics menu to select a symbolics file to
append. Palm OS Debugger loads the code symbolics without
requiring the code to be downloaded to the debug target.

You can use the symbolics to set breakpoints in the Files view. Any
breakpoints that you set prior to connecting to the debug target and
running the first time are set as unresolved. When you connect to
the debug target, Palm OS Debugger attempts to resolve these
breakpoints.

Remove Symbolics
Use the Remove Symbolics menu to remove the symbolics that had
been previously added using the Append Symbolics menu.

Load Memory
Use the Load Memory menu to load the memory contents from a
previously saved file. Select the binary file to load, and enter the
absolute memory location to be loaded.

You specify the memory location range as a standard ANSI C string
in one of the following ways:

• Using a low address and a high address. For example, if you
specify the string "0x8000-0x9000", Palm OS Debugger
loads the address range 0x00008000 to 0x00009000.

• Using a starting address and a size. For example, if you
specify the string "0x8000+0x1000", Palm OS Debugger
loads the address range 0x00008000 to 0x00009000.

Palm OS Debugger Menu Reference
Target

Palm OS Debugger Guide 87

• Using a starting address. If you don’t specify a size for the
memory range, then Palm OS Debugger loads the entire
binary file into the memory starting at the starting address.

Palm OS Debugger downloads the file contents as a binary file into
the specified memory location.

NOTE: The examples above show the address values and size
specified as hexadecimal numbers. The address values and size
can be specified in decimal, hexadecimal, octal, floating point, or
binary, as described in “Registers View User Interface” on
page 62.

Save Memory
Use the Save Memory menu to save the current memory contents to
a file. Enter a file name for the memory contents, and the absolute
memory location to be saved.

You specify the memory location range as a standard ANSI C string
in one of two ways:

• Using a low address and a high address. For example, if you
specify the string "0x8000-0x9000", Palm OS Debugger
saves the address range 0x00008000 to 0x00009000.

• Using a starting address and a size. For example, if you
specify the string "0x8000+0x1000", Palm OS Debugger
saves the address range 0x00008000 to 0x00009000.

If you specify a starting address and no size, then Palm OS
Debugger saves an empty file (a file of size 0).

NOTE: The examples above show the address values and size
specified as hexadecimal numbers. The address values and size
can be specified in decimal, hexadecimal, octal, floating point, or
binary, as described in “Registers View User Interface” on
page 62.

Palm OS Debugger Menu Reference
Control

88 Palm OS Debugger Guide

Flash Memory
This menu is intended for licensee use.

Control
Use the Control menu, as shown in Figure 5.7, to control the
execution of the program you are debugging.

Figure 5.7 Control Menu

Run
Use the Run menu to execute a program on the debug target,
stopping only at breakpoints or at the normal end of the program
execution.

If you have not yet connected to a debug target, Palm OS Debugger
tries to connect. If the connection is successful, then Palm OS
Debugger downloads the code to the debug target and runs it.

If you have already connected to the debug target, Palm OS
Debugger runs the code that was already downloaded.

Restart
Use the Restart menu to go back to the beginning of a program,
restarting the debugging session.

Palm OS Debugger Menu Reference
Window

Palm OS Debugger Guide 89

Stop
Use the Stop menu to suspend program execution during a
debugging session.

Kill
Use the Kill menu to completely stop the execution of the program
you are debugging and end the debugging session. This menu item
will also disconnect Palm OS Debugger from the debug target.

Step
Use the Step menu to execute code, a single source line at a time, in
the program being debugged.

Step In
Use the Step In menu to execute code a single source line at a time,
stepping into a subroutine if execution branches into a subroutine.

Step Out
Use the Step Out menu to execute the rest of the code in a
subroutine, stopping if execution steps out of the subroutine.

Window
Use the Window menu, shown in Figure 5.8, to open new
debugging windows and to arrange the open debug windows.

Palm OS Debugger Menu Reference
Window

90 Palm OS Debugger Guide

Figure 5.8 Window Menu

Cascade
Use the Cascade menu to have the open windows displayed in an
overlapping arrangement, with the title bar on each window visible.

Tile
Use the Tile menu to have the open windows displayed in the main
window so that none of the windows overlap.

Arrange Icons
Use the Arrange Icons menu to arrange minimized window icons in
the main window.

Files Window
Opens the content of the files view in a separate window. See “Files
View” on page 55 for information on the files view.

Palm OS Debugger Menu Reference
Window

Palm OS Debugger Guide 91

Breakpoints Window
Opens the content of the breakpoints view in a separate window.
See “Breakpoints View” on page 58 for information on the
breakpoints view.

Registers Window
Opens the content of the registers view in a separate window. See
“Registers View” on page 62 for information on the registers view.

Variables Window
Opens the content of the variables view in a separate window. See
“Variables View” on page 64 for information on the variables view.

Global Variables Window
Opens the content of the global variables view in a separate
window. See “Global Variables View” on page 66 for information on
the global variables view.

Memory Window
Opens the content of the memory view in a separate window. See
“Memory View” on page 67 for information on the memory view.

Processes Window
Opens the content of the processes view in a separate window. See
“Processes View” on page 69 for information on the processes view.

Stack Trace Window
Opens the content of the stack trace view in a separate window. See
“Stack Trace View” on page 70 for information on the stack trace
view.

Palm OS Debugger Menu Reference
Help

92 Palm OS Debugger Guide

Expressions Window
Opens the content of the expressions view in a separate window. See
“Expressions View” on page 70 for information on the expressions
view.

Profiler Window
Opens the content of the profiler view in a separate window. See
“Profiler View” on page 73 for information on the profiler view.

Create Dockable Windows
Select the Create Dockable Windows menu to cause the child
windows to appear as docked windows attached to the main
window. If this menu item is not selected, then child windows are
separate child windows.

File Names
Palm OS Debugger adds each open debug target to the Window
menu, so that you can switch between the currently opened
windows.

Help
Use the Help menu, as displayed in Figure 5.9, to display
information about Palm OS Debugger.

Figure 5.9 Help Menu

Palm OS Debugger Menu Reference
Help

Palm OS Debugger Guide 93

About Palm OS Debugger
Use the About Palm OS Debugger menu to display an About
dialog box for Palm OS Debugger.

Palm OS Debugger Menu Reference
Help

94 Palm OS Debugger Guide

Palm OS Debugger Guide 95

6
AdnDebug Manager
This chapter provides documentation for the ARM-based debugger
nub manager, called AdnDebug Manager, and is divided into the
following sections:

AdnDebug Manager Concepts 96

AdnDebug Manager Constants 97

AdnDebug Manager Functions and Macros 98

The AdnDebug Manager API is declared in the header file
AdnDebugMgr.h. These functions can be used within ARM
subroutines, also called PACE native objects.

AdnDebug Manager
AdnDebug Manager Concepts

96 Palm OS Debugger Guide

AdnDebug Manager Concepts
In order to debug your ARM-based code, your application needs to
do the following:

• “Activate the ARM Debugger Nub” on page 96

• “Register with Palm OS Debugger” on page 96

Activate the ARM Debugger Nub
The ARM debugger nub is not active on an ARM-based device until
an application activates it. Your ARM subroutine must first enable
the ARM debugger nub by calling the AdnDebugEnableSet()
macro.

// Tell the debugger we want to enable full debugging
UInt32 flags = AdnDebugEnableGet();
flags |= kAdnEnableMasterSwitch | kAdnEnableFullDebugging;
AdnDebugEnableSet(flags);

Register with Palm OS Debugger
Palm OS Debugger needs to be able to resolve where each ARM
subroutine is located in memory. Your ARM subroutine must
register with Palm OS Debugger by calling the
AdnDebugNativeRegister() macro. You need to call the
AdnDebugNativeRegister() macro once after the code resource
has been locked, typically on the first call into the ARM subroutine.

However, your code should also unregister (prior to the being
unlocked) by calling the AdnDebugNativeUnregister() macro.

These calls do not act as breakpoints and they do not halt device
operation. But they may cause breakpoints to become resolved or
unresolved.

// Tell the debugger where our code lives in memory:
AdnDebugNativeRegister(

sysFileTApplication, appFileCreator,
NativeResourceType, NativeResourceID);

AdnDebug Manager
Debugging Constants

Palm OS Debugger Guide 97

The ARM subroutine needs to define appFileCreator,
NativeResourceType, and NativeResourceID in order for
Palm OS Debugger to locate the corresponding debug symbol file.

For example, if you have an ARMC resource with ID 0001, the
debug symbol file is typically of the form ARMC0001.bin.elf. The
ELF file must be in the same directory as the PRC file that contains
the ARM subroutine you are debugging.

AdnDebug Manager Constants

Debugging Constants
Purpose These constants define debugging features that you can enable and

disable.

Declared In AdnDebugMgr.h

Constants #define kAdnEnableDebugIndicator 0x00000002
The debug indicator enables a visual indicator that shows
when the debugger nub is performing or waiting for serial
communication. For example, on the Tungsten T device, the
green LED blinks to indicate that the debugger nub is active.

#define kAdnEnableFullDebugging 0x00000004
The full debugging feature must be enabled in order for
application calls to AdnDebugNativeRegister() to be
processed correctly. If this feature is disabled, then other
native debugging calls (such as ModulePostLoad and
ModulePostUnload) are also disabled.

#define kAdnEnableMasterSwitch 0x00000001
When the master switch is enabled, the debug nub catches
fatal ARM exceptions, enters the debugger if
AdnDebugBreak() is called, and catches
ErrFatalDisplay() calls.

When the master switch is disabled, the you are limited to
calling the AdnDebugEnableSet() and
AdnDebugEnableGet() macros.

AdnDebug Manager
AdnDebug Manager Functions and Macros

98 Palm OS Debugger Guide

#define kAdnEnableShowSafeFatalAlerts 0x00000008
When show safe fatal alerts is enabled, the debugger nub
does not catch calls to ErrFatalDisplay() if the Reset,
Debug, and Continue options are displayed.

AdnDebug Manager Functions and Macros

AdnDebugBreak Macro
Purpose Break into Palm OS Debugger from the ARM subroutine.

Declared In AdnDebugMgr.h

Prototype #define AdnDebugBreak ()

Parameters None.

Returns Nothing.

Comments This macro is the ARM-based equivalent to the Debug Manager call
DbgBreak().

AdnDebugEnableGet Macro
Purpose This macro returns flags indicating which debugging features are

enabled.

Declared In AdnDebugMgr.h

Prototype #define AdnDebugEnableGet ()

Parameters None.

Returns UInt32 representing flags as defined in “Debugging Constants” on
page 97.

Example UInt32 flags = AdnDebugEnableGet();
flags |= kAdnEnableMasterSwitch | kAdnEnableFullDebugging;
AdnDebugEnableSet(flags)

See Also AdnDebugEnableSet

AdnDebug Manager
AdnDebugLicenseeSpecific

Palm OS Debugger Guide 99

AdnDebugEnableGetSupported Macro
Purpose This macro returns flags indicating which debugging features are

supported.

Declared In AdnDebugMgr.h

Prototype #define AdnDebugEnableGetSupported ()

Parameters None.

Returns UInt32 made up of kAdnEnable flags as defined in “Debugging
Constants” on page 97.

AdnDebugEnableSet Macro
Purpose This macro enables the debugging features indicated by the

parameter flags.

Declared In AdnDebugMgr.h

Prototype #define AdnDebugEnableSet (UInt32 flags)

Parameters → flags
kAdnEnable flags as defined in “Debugging Constants” on
page 97

Returns Nothing.

Comments The ARM debugger nub is not active on an ARM-based device until
an application activates it. The ARM subroutine must first enable
the ARM debugger nub by calling the macro
AdnDebugEnableSet().

See Also AdnDebugEnableGet

AdnDebugLicenseeSpecific Macro
Purpose This macro makes a licensee-specific call to AdnDebug Manager.

Declared In AdnDebugMgr.h

Prototype #define AdnDebugLicenseeSpecific (oemID, selector,
param)

Parameters → oemID
PalmSource-registered OEM ID (creator ID)

AdnDebug Manager
AdnDebugMessage

100 Palm OS Debugger Guide

→ selector
Licensee-specific function selector.

→ param
Function-specific parameter.

Returns Returns -1 if the licensee-specific function in not supported.

AdnDebugMessage Macro
Purpose This macro displays a debug message in the debugger.

Declared In AdnDebugMgr.h

Prototype #define AdnDebugMessage (messageP)

Parameters → messageP
A pointer to a sequence of ASCII characters terminated by a
null character (the string that is displayed in the debugger).

Returns Nothing.

Comments This macro is the ARM-based equivalent to the Debug Manager call
DbgMessage().

AdnDebugMessageIf Macro
Purpose This macro displays a debug message in the debugger if the

condition specified by the condition parameter is true.

Declared In AdnDebugMgr.h

Prototype #define AdnDebugMessageIf (condition, messageP)

Parameters → condition
A boolean value.

→ messageP
A pointer to a sequence of ASCII characters terminated by a
null character (the string that is displayed in the debugger).

Returns Nothing.

See Also AdnDebugMessage

AdnDebug Manager
AdnDebugNativeRegisterAddr

Palm OS Debugger Guide 101

AdnDebugNativeRegister Macro
Purpose This macro registers a PACE native object with the debugger.

Declared In AdnDebugMgr.h

Prototype #define AdnDebugNativeRegister (dbType, dbCreator,
rsrcType, rsrcID)

Parameters → dbType
The application database type (for example, 'appl').

→ dbCreator
The application database’s creator code.

→ rsrcType
The PACE native object’s resource type (for example,
'ARMC').

→ rsrcID
The PACE native object’s resource ID.

Returns Nothing.

Comments The flag kAdnEnableFullDebugging must be set using
AdnDebugEnableSet in order for
AdnDebugNativeRegister() calls to be processed correctly.

See Also AdnDebugEnableSet

AdnDebugNativeRegisterAddr Macro
Purpose This macro registers a PACE native object with the debugger. This

version can be used for code that is in a chunk separate from the
application. Most PACE native objects can use the simpler form,
AdnDebugNativeRegister.

Declared In AdnDebugMgr.h

Prototype #define AdnDebugNativeRegisterAddr (dbType,
dbCreator, rsrcType, rsrcID, codeAddr)

Parameters → dbType
The application database type (for example, 'appl').

→ dbCreator
The application database’s creator code.

AdnDebug Manager
AdnDebugNativeUnregister

102 Palm OS Debugger Guide

→ rsrcType
The PACE native’s object resource type (for example,
'ARMC').

→ rsrcID
The PACE native’s object resource ID.

→ codeAddr
The PACE native object’s code base address.

Returns Nothing.

Comments The flag kAdnEnableFullDebugging must be set using
AdnDebugEnableSet in order for
AdnDebugNativeRegisterAddr() calls to be processed
correctly.

AdnDebugNativeUnregister Macro
Purpose This macro unregisters a PACE native object with the debugger.

Declared In AdnDebugMgr.h

Prototype #define AdnDebugNativeUnregister ()

Parameters None.

Returns Nothing.

Comments You should call this macro prior to unlocking the PACE native
object code resource so that the debugger breakpoints can be
removed.

See Also AdnDebugNativeRegister, AdnDebugNativeRegisterAddr

AdnDebugNativeUnregisterAddr Macro
Purpose This macro unregisters a PACE native object with the debugger.

Declared In AdnDebugMgr.h

Prototype #define AdnDebugNativeUnregisterAddr (rsrcID)

Parameters → rsrcID
A pointer to the DbgPostUnloadParamsType structure.

Returns Nothing.

AdnDebug Manager
AdnDebugUpdateLoadedModules

Palm OS Debugger Guide 103

Comments You should call this macro prior to unlocking the PACE native
object code resource so that the debugger breakpoints can be
removed.

See Also AdnDebugNativeRegister, AdnDebugNativeRegisterAddr

AdnDebugUpdateLoadedModules Macro
Purpose Notify Palm OS Debugger of any recently loaded or unloaded

native modules. This call is not used for debugging PACE native
objects.

Declared In AdnDebugMgr.h

Prototype #define AdnDebugUpdateLoadedModules ()

Parameters None.

Returns Nothing.

AdnDebug Manager
AdnDebugUpdateLoadedModules

104 Palm OS Debugger Guide

Palm OS Debugger Guide 105

Index

Numerics
68K disassembler menu 68

A
append symbolics menu 86
ARM disassembler menu 68
arrange icons 90
ASCII integer menu 63

B
binary menu 63
book organization iii
boolean menu 63
breakpoints view 58
bytes per column menu 68
bytes per row menu 68

C
cascade menu 90
change filename menu 57
change path menu 57
char menu 64
clear all breakpoints menu 61
clear breakpoint menu 61
clear menu 74, 77
compiler requirements 3
conceptual overview 1
connect menu 85
control menu 88
copy all menu 58, 62, 64, 66, 67, 69, 70, 73, 74
copy menu 58, 62, 64, 66, 67, 69, 70, 73, 74, 81
cut menu 81

D
debug console 75
debug targets 2, 5
debugger preferences dialog 83
decimal (signed) menu 64
decimal (unsigned) menu 64
delete expression menu 73
disable all breakpoints menu 61
disable breakpoint menu 61

disassemble menu 52
disassembly menu 52
disconnect menu 86

E
echo input menu 74, 77
edit menu 81
enable all breakpoints menu 61
enable breakpoint menu 60
exit menu 80
exporting

preferences 24
expressions console 70, 73

F
file menu 79
files view 55
find menu 82
find next menu 82
find previous menu 82
fixed 50/50 (signed) menu 64
fixed 50/50 (unsigned) menu 64
fixed 75/25 (signed) menu 64
fixed 75/25 (unsigned) menu 64
float menu 64
format changes are global menu 64
format elements as menu 66, 67
format menu 68
format types menu 66, 67

G
global variables view 66
goto PC menu 54

H
help menu 92
hex byte stream menu 64
hex menu 64
hex with decimal (signed) menu 64
hex with decimal (unsigned) menu 64
hexadecimal numbers

base prefix 68
uppercase 68

106 Palm OS Debugger Guide

I
importing

preferences 24

K
key bindings editor 82
key bindings menu 82
kill menu 89

L
load memory menu 86

M
memory view 67
menu reference 79
menus

68K disassembler 68
ARM disassembler 68
ASCII integer 63
binary 63
boolean 63
bytes per column 68
bytes per row 68
change filename 57
change path 57
char 64
clear 74, 77
clear all breakpoints 61
clear breakpoint 61
control 88
control>kill 89
control>restart 88
control>run 88
control>step 89
control>step in 89
control>step out 89
control>stop 89
copy 58, 62, 64, 66, 67, 69, 70, 73, 74
copy all 58, 62, 64, 66, 67, 69, 70, 73, 74
decimal (signed) 64
decimal (unsigned) 64
delete expression 73
disable all breakpoints 61
disable breakpoint 61
disassemble 52

disassembly 52
echo input 74, 77
edit 81
edit>copy 81
edit>cut 81
edit>find 82
edit>find next 82
edit>find previous 82
edit>key bindings 82
edit>next possible breakpoint 82
edit>paste 82
edit>preferences 83
edit>previous possible breakpoint 82
edit>undo 81
enable all breakpoints 61
enable breakpoint 60
file 79
file>exit 80
file>open 80
file>save 80
fixed 50/50 (signed) 64
fixed 50/50 (unsigned) 64
fixed 75/25 (signed) 64
fixed 75/25 (unsigned) 64
float 64
format 68
format changes are global 64
format elements as 66, 67
format types 66, 67
goto PC 54
help 92
hex 64
hex byte stream 64
hex with decimal (signed) 64
hex with decimal (unsigned) 64
mixed for file 52
mixed for function 52
mixed for source line 52
new expression 73
number disassembler 69
open file in new window 57
paste 77
remove all added columns 69
return to current PC 52
revert to original path 58
run to cursor 54
select all 74, 77

Palm OS Debugger Guide 107

set breakpoint at address 53, 61
set breakpoint at cursor 54
set breakpoint at function 53, 61
set disassembler 53
set PC at cursor 54
show all files 58
show all globals 67
show base prefix 68
show file globals 66
source 51
string (C) 64
string (Pascal) 64
sync on eol 74, 77
target 85
target>append symbolics 86
target>connect 85
target>disconnect 86
target>load memory 86
target>remove symbolics 86
target>save memory 87
thumb disassembler 69
uppercase numbers 68
view 84
view>status bar 85
view>toolbar 85
window 89
window>arrange icons 90
window>cascade 90
window>tile 90

mixed for file menu 52
mixed for function menu 52
mixed for source line menu 52

N
new expression menu 73
next possible breakpoint menu 82
number disassembler menu 69

O
open file in new window menu 57
open menu 80
operating systems 2

P
Palm Debugger 2

Palm OS Debugger
breakpoints view 58
comparison to Palm Debugger 2
debug console 75
debug targets 5
expressions console 70, 73
features 1
files view 55
global variables view 66
memory view 67
menus 79
overview 1
prerequisites 2

compiler 3
debug targets 2
operating systems 2

processes view 69
registers view 62
source view 48
stack trace view 70
stdio console 73
targets 5
variables view 64
windows 45

paste menu 77, 82
preferences

exporting 24
importing 24
resizing the preference fields 24

preferences menu 83
previous possible breakpoint menu 82
processes view 69

R
registers view 62
remove all added columns menu 69
remove symbolics menu 86
resizing

preference fields 24
restart menu 88
return to current PC menu 52
revert to original path menu 58
run menu 88
run to cursor menu 54

108 Palm OS Debugger Guide

S
save memory menu 87
save menu 80
select all menu 74, 77
set breakpoint at address menu 53, 61
set breakpoint at cursor menu 54
set breakpoint at function menu 53, 61
set disassembler menu 53
set PC at cursor menu 54
shortcut editor 82
show all files menu 58
show all globals menu 67
show base prefix menu 68
show file globals menu 66
source menu 51
source view 48
stack trace view 70
status bar menu 85
stdio console 73
step in menu 89
step menu 89
step out menu 89

stop menu 89
string (C) menu 64
string (Pascal) menu 64
sync on eol menu 74, 77

T
target menu 85
thumb disassembler menu 69
tile menu 90
toolbar menu 85

U
undo menu 81
uppercase numbers menu 68

V
variables view 64
view menu 84

W
window menu 89

	Palm OS® Debugger Guide
	About This Document
	What This Book Contains
	Additional Resources

	Table of Contents
	Introducing Palm OS Debugger
	What Is Palm OS Debugger?
	How Does Palm OS Debugger Compare to Palm Debugger?
	Prerequisites for Using Palm OS Debugger
	Operating System Requirements
	Debug Targets
	Compiler Requirements

	Connecting Palm OS Debugger with a Target
	Overview of Debugger Communication
	Debugging with Palm OS Garnet Devices
	Installing the Debugger Nub
	Connecting Palm OS Debugger with a Palm OS Garnet Device
	Removing the Debugger Nub from a Tungsten�T Device

	Debugging with Palm OS Garnet Simulator
	Connecting Palm OS Debugger with Palm OS Garnet Simulator

	Debugging with 68K-Based Devices
	Connecting Palm OS Debugger with a 68K- Based Device

	Debugging with Palm OS Emulator
	Connecting Palm OS Debugger with Palm OS Emulator

	Overview of Application Debugging
	68K-Based Application Debugging
	ARM Subroutine Debugging
	Palm OS Protein Application Debugging

	Setting Palm OS Debugger Preferences
	How to Set Preferences
	Importing and Exporting Preferences
	Importing
	Exporting

	Communications Preferences
	Serial Preferences
	Sockets Preferences

	Debugger Plug-in Preferences
	68K Preferences
	ARM Preferences

	Debugger UI Preferences
	Fonts Preferences
	Session Preferences

	Disassembler Preferences
	68K Preferences
	ARM Preferences

	Download Plug-ins Preferences
	Protocols Preferences
	68K Palm OS Debug Kernel Preferences
	ARM Palm OS 5 Debug Nub Preferences

	RTOS Plug-ins Preferences
	Palm OS 6.0 Preferences

	Runtime Helpers Preferences
	ARM Palm OS Preferences

	Symbolics Preferences
	DWARF 1.1 Preferences
	DWARF 2.0 Preferences

	Running Palm OS Debugger
	Palm OS Debugger Overview
	Getting Started
	Modifying Preferences

	Using the Palm OS Debugger Windows
	Source View
	Files View
	Breakpoints View
	Registers View
	Variables View
	Global Variables View
	Memory View
	Processes View
	Stack Trace View
	Expressions View
	Profiler View
	STDIO Console
	Debug Console

	Palm OS Debugger Menu Reference
	Palm OS Debugger Menu Reference Overview
	File
	Open
	Save
	Recent File List
	Exit

	Edit
	Undo
	Cut
	Copy
	Paste
	Find
	Find next
	Find previous
	Next breakpoint
	Previous breakpoint
	Key Bindings
	Preferences

	View
	Main Toolbar
	Window Toolbar
	Status Bar

	Target
	Connect
	Disconnect
	Append Symbolics
	Remove Symbolics
	Load Memory
	Save Memory
	Flash Memory

	Control
	Run
	Restart
	Stop
	Kill
	Step
	Step In
	Step Out

	Window
	Cascade
	Tile
	Arrange Icons
	Files Window
	Breakpoints Window
	Registers Window
	Variables Window
	Global Variables Window
	Memory Window
	Processes Window
	Stack Trace Window
	Expressions Window
	Profiler Window
	Create Dockable Windows
	File Names

	Help
	About Palm OS Debugger

	AdnDebug Manager
	AdnDebug Manager Concepts
	Activate the ARM Debugger Nub
	Register with Palm OS Debugger

	AdnDebug Manager Constants
	Debugging Constants

	AdnDebug Manager Functions and Macros
	AdnDebugBreak
	AdnDebugEnableGet
	AdnDebugEnableGetSupported
	AdnDebugEnableSet
	AdnDebugLicenseeSpecific
	AdnDebugMessage
	AdnDebugMessageIf
	AdnDebugNativeRegister
	AdnDebugNativeRegisterAddr
	AdnDebugNativeUnregister
	AdnDebugNativeUnregisterAddr
	AdnDebugUpdateLoadedModules

	Index

