N\
palmsource
) g

Palm OS® Protein C/C++
Compiler Language &
Library Reference

Palm OS® Developer Suite

CONTRIBUTORS

Written by Eric Shepherd.
Engineering contributions by Kenneth Albanowski, Flash Sheridan, and Chris Tate.

Copyright © 2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT
(INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, the PalmSource logo, BeOS, Graffiti, HandFAX, HandMAIL, HandPHONE, HandSTAMP, HandWEB,
HotSync, the HotSync logo, iMessenger, MultiMail, MyPalm, Palm, the Palm logo, the Palm trade dress, Palm
Computing, Palm OS, Palm Powered, PalmConnect, PalmGear, PalmGlove, PalmModem, Palm Pack, PalmPak,
PalmPix, PalmPower, PalmPrint, Palm.Net, Palm Reader, Palm Talk, Simply Palm and ThinAir are trademarks of
PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks or registered trademarks of
their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Palm OS Protein C/C++ Compiler Language & Library Reference PalmSource, Inc.
Document Number 3124-002 1240 Crossman Avenue
November 9, 2004 Sunnyvale, CA 94089
For the latest version of this document, visit USA

http://www.palmos.com/dev/support/docs/ www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Table of Contents

About This Book vii
How This Book Is Organized. vii
Palm OS Developer Suite Documentation viii
Additional Resources00 ix

Part I: C/C++ Compiler Language Reference

1 Language Overview 3
C Technical Requirements 4

C++ Technical Requirements 4

Limitations o000 5

RestrictionsonC99.o L. 5

Restrictionson C++. 5

Restrictions on Data Types. 6

2 Language Elements 11
Lexical Elements 11

CharacterSeto 11

Comments00 12

Tokens oo L Lo 13

Identifiers.o o0 oo 13

Keywords. 00 14

Constants 16

Operatorso 16

Separators.o 0oL 20

Preprocessor Directives 20

#pragma L ... 20

Predefined Constants 21

Palm OS Protein C/C++ Compiler Language & Library Reference iii

Part ll: C/C++ Compiler Library Reference

3 STLport/iostream 25
4 Palm OS-Specific Libraries 27
The Palm OS Implementation of the Standard C Library (libc) . 28
5 Runtime Library Functions 29
Supported Functionso L. 29
posix/ctypeho 0000000 Lo 29
posix/math.ho 000000000 29
posix/stdioho 00000 oL 30
posix/stdlibho 0000000 31
posix/stringh00 000000 32
posix/stringsh 000000 32
posix/timeh.o 000000000 32
posix/sys/ioctlh.o 000 0L 32
posix/sys/PalmMath.h 00 L. 33
posix/sys/timeho o000 oL 33
posix/sys/uioh00 000000 0oL 33
Unsupported Functions 33
posix/ctypeho 000 o000 33
posix/inttypesh00 0000 33
posix/localeho 0000000 0oL 33
posix/math.ho 00000 34
posix/signalh 000000 34
posix/stdioho o000 000 oL 34
posix/stdlibho 000000000 35
posix/stringho 000000 35
posix/stringsho 0000000 oL 36
posix/termios.ho o000 0L 36
posix/timeh.00 0oL 36
posix/wcharh.o 000000 oL 36
posix/machine/arm/paramh 0oL 37
posix/sys/bswap.h. 0000000000 37
posix/sys/socketh. o000 0L 37

iv. Palm OS Protein C/C++ Compiler Language & Library Reference

6 assert.h

7 ctype.h

8 errno.h

9 ioctl.h

10 is0646.h

11 locale.h

12 math.h

13 PalmMath.h

14 stdarg.h
15 stddef.h
16 stdio.h
17 stdlib.h

posix/sys/stath00 0oL 37
posix/sys/timeh 00000000 L 37
posix/sys/uioh00 0000000 37

Functions and Macros. 39

Global Variables .. 43

Constantso 55
Functions and Macros. 57

Functions and Macros. 68

Palm OS Protein C/C++ Compiler Language & Library Reference v

18 string.h
19 strings.h
20 time.h
21 time.h
Constantso
Functions and Macros.
22 uio.h
Structuresand Types
Functions and Macros.
23 wchar.h
Index

69
73
75

77
77

77

83
83

83
85
87

vi Palm OS Protein C/C++ Compiler Language & Library Reference

About This Book

This book provides reference information about the C/C++
language and runtime libraries used with the Palm OS® compiler
tools. The audience for this book is application developers creating
Palm OS Protein ARM-native applications and shared libraries
using either the C or C++ programming languages for ARM-based
handheld devices.

This book assumes you're already familiar with the C and C++
programming languages. Its goal is to familiarize you with the
specific capabilities of the compiler provided as part of the Palm OS
Developer Suite.

If you're unfamiliar with C or C++, or need a good reference for
these languages, we recommend the following books, which are the
defacto standard references for the languages:

* The C Programming Language, 2nd Edition by Brian W.
Kernighan, Dennis Ritchie, and Dennis M. Ritchie. ISBN 0-
13-1103628.

* C: A Reference Manual, Fifth Edition, by Samuel P. Harbison,
Prentice Hall, Inc., 2002, ISBN 0-13-089592.

® The C++ Programming Language, Special 3rd Edition by Bjarne
Stroustrup. ISBN 0-20-1700735.

How This Book Is Organized

This book is divided into two parts, a language reference and a
library reference.

Part I, “C/C++ Compiler Language Reference,” has the following
organization:

e Chapter 1, “Language Overview,” on page 3 describes the

technical requirements, language extensions, and limitations
of the Palm OS compiler.

¢ Chapter 2, “Language Elements,” on page 11 describes the
Palm OS compiler’s C/C++ language differences, as
compared to the ANSI standard.

Part II, “C/C++ Compiler Library Reference,” has the following
organization:

Palm OS Protein C/C++ Compiler Language & Library Reference vii

About This Book
Palm OS Developer Suite Documentation

e Chapter 3, “STLport/iostream,” on page 25 describes the
STLport implementation of the C++ standard template
library.

¢ Chapter 4, “Palm OS-Specific Libraries,” on page 27
describes general library information.

¢ Chapter 5, “Runtime Library Functions,” on page 29
describes the supported and unsupported runtime functions.

* The chapters that follow, beginning with Chapter 6,
“assert.h,” on page 39 each describe a specific header file and
the supported structures, runtime functions, and macros
defined within that header file.

Palm OS Developer Suite Documentation

The following tools books are part of the Palm OS Developer Suite:

Document Description

Introduction to Palm OS Developer Suite Provides an overview of all of the Palm
OS development tools:

¢ compiler tools
* resource tools
* testing and debugging tools

Palm OS Protein C/C++ Compiler Tools Describes how to use the Palm OS
Guide compiler tools:

* pacc — compiler

* paasm — assembler
¢ palink — linker

¢ palib - librarian

¢ PSLib — the Palm OS shared library
tool, including information about
shared library definition (SLD)
files

¢ PEIf2Bin — Palm OS post linker
¢ ElfDump - diagnostic tool

viii Palm OS Protein C/C++ Compiler Language & Library Reference

About This Book
Additional Resources

Document Description

Palm OS Resource Tools Guide Describes how to use the Palm OS
resource tools:

¢ GenerateXRD — migration tool

¢ Palm OS Resource Editor — XRD
editor

¢ PalmRC - building tool

¢ PRCMerge — building tool

¢ PRCCompare — comparison tool
* hOverlay - localization tool

¢ PRCSign and PRCCert — code-
signing tools

Palm OS Debugger Guide Describes how to use the Palm OS
Debugger.
Palm OS Resource File Formats Describes the XML formats used for XML

resource definition (XRD) files. XRD files
are used to define Palm OS resources and
are the input files for the Palm OS
resource tools.

Palm OS Cobalt Simulator Guide Describes how to use the Palm OS Cobalt
Simulator.
Palm OS Virtual Phone Guide Describes how to use Virtual Phone.

Additional Resources

e Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http:/ /www.palmos.com/dev/support/docs/

Palm OS Protein C/C++ Compiler Language & Library Reference ix

http://www.palmos.com/dev/support/docs/

About This Book
Additional Resources

¢ Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com /dev/training
* Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and development
documentation at

http://www.palmos.com/dev/support/kb/

x Palm OS Protein C/C++ Compiler Language & Library Reference

http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

N\
palmsource
N\’

Part |

C/C++ Compiler
Language
Reference

This part is organized into the following chapters:

Language Overview 3

Language Elements11

1

Language Overview

The Palm OS® Protein C/C++ Compiler is a full-featured,
standards-based, optimizing C/C++ compiler.

® The Palm OS compiler supports the C language standard
ANSI/ISO/IEC 9899:1999, commonly known as C99, as a
freestanding implementation. The compiler uses this
language by default for C code.

It is required that you understand both the ANSI/ISO
standard C language and library. The ANSI/ISO 9899:1999 C
standards document completely describes the standard C
library functions, as do several widely-used references
including;:

— The C Programming Language, Second Edition, by Brian W.
Kernighan and Dennis M. Ritchie, Prentice Hall, Inc.,
1988, ISBN 0-13-1103628.

— C: A Reference Manual, Fifth Edition, by Samuel P.
Harbison, Prentice Hall, Inc., 2002, ISBN 0-13-089592.

— Online at www.dinkumware.com/refxc.html.

* The Palm OS compiler supports the C++ language standard
ANSI/ISO/IEC 14882:1998(E). The C++ language standard is
also documented in other widely-used references including
The C++ Programming Language, Third Edition, by Bjarne
Stroustrup, Addison-Wesley, 2000, ISBN 0-20-1700735.

The Palm OS compiler takes as input one or more C and/or C++
language text files (written according to the standards above) and
produces a corresponding number of assembly language source
tiles (see the Palm OS Protein C/C++ Compiler Tools Guide for more
details).

Palm OS Protein C/C++ Compiler Language & Library Reference 3

Language Overview
C Technical Requirements

C Technical Requirements

In addition to the ANSI/ISO/IEC requirements previously
mentioned, the C facilities of the Palm OS compiler meet the
following additional technical requirements:

Supports a variety of useful extensions to the base language,
particularly those useful to the ARM architecture.

Supports compiling with extensions removed that are
incompatible with the appropriate ANSI specification.

Produces code for the ARM instruction set for version 4T
architecture microprocessors as defined in the ARM Reference
Manual, revision E.

Adbheres to the C calling conventions of the base standard
ABI for the ARM architecture.

Adheres to the shared library conventions documented in the
ARM-Thumb Shared Library Architecture (ASHLA, document
number MADEIRA-0020-CUST-DDES A-01).

Produces DWAREF version 1.1 debugging information, if
debugging output is requested.

C++ Technical Requirements

In addition to the ANSI/ISO/IEC requirements previously
mentioned, the C++ facilities of the Palm OS compiler meet the
following additional technical requirements:

Adheres to the C++ calling conventions of the base standard
ABI for the ARM architecture.

4 Palm OS Protein C/C++ Compiler Language & Library Reference

Language Overview
Limitations

Limitations

There are restrictions on some of the newer, more complex, and more
exotic features of the relevant standards.

Restrictions on C99
The C99 implementation is limited is the following ways:

* Complex arithmetic is not supported, and thus all usages of the
_Complex or _Imaginary types are unsupported. This includes:

— float Complex

— double Complex

— long double Complex
— float Imaginary

— double Imaginary

— long double Imaginary

* Avoid use of the long double type in the Simulator environment.
It is unsupported and should not be used. There is a binary
compatibility problem with i386 gcc and the compiler used to build
the Simulator.

* Floating-point environment control is not available, therefore the
__STDC_IEC_559 _and STDC_ IEC_559 COMPLEX _ macros
are not defined.

¢ Variable length arrays are available, however during debugging,
the array length may not be available. The allocation of local VLAs
is implemented via calls tomalloc () and free().

Restrictions on C++
The C++ implementation is limited is the following way:
¢ Exported templates are not supported.

* The long long type is an extension to C++, not part of the
standard. If you wish to disable support for it, you can use the
-strict option.

Palm OS Protein C/C++ Compiler Language & Library Reference 5

Language Overview

Limitations

Restrictions on Data Types

Table 1.1 lists the maximum and minimum sizes of the integral data
types supported by the Palm OS Protein C/C++ Compiler.

Table 1.1 Maximum and minimum sizes of integer types

Constant Value Description

CHAR_BIT 8 Number of bits in a byte.

CHAR_MAX 255 Maximum value of an object of type
char.

CHAR_MIN 0 Minimum value of an object of type char.

INT MAX +2147483647 Maximum value of an object of type int.

INT MIN -2147483648 Minimum value of an object of type int.

LONG_MAX +2147483647 Maximum value of an object of type 1long
int.

LONG_MIN -2147483648 Minimum value of an object of type long
int.

LLONG_MAX +9223372036854775807 Maximum value of an object of type long
long int.

LLONG_MIN -9223372036854775808 Minimum value of an object of type long
long int.

MB_LEN MAX 1 Maximum number of bytes in a multibyte
character, regardless of locale.
NOTE: This value should not be relied
upon. Its use is not recommended.

SCHAR_MAX +127 Maximum value of an object of type
signed char.

SCHAR_MIN -128 Minimum value of an object of type

signed char.

6 Palm OS Protein C/C++ Compiler Language & Library Reference

Language Overview
Limitations

Table 1.1 Maximum and minimum sizes of integer types
Constant Value Description
SHRT_MAX +32767 Maximum value of an object of type
short int.
SHRT_MIN -32768 Minimum value of an object of type
short int.
UCHAR_MAX 255 Maximum value of an object of type
unsigned char.
USHRT MAX 65535 Maximum value of an object of type
unsigned short.
UINT MAX 4294967295 Maximum value of an object of type
unsigned int.
ULONG_MAX 4294967295 Maximum value of an object of type
unsigned long int.
ULLONG_MAX 18446744073709551615 Maximum value of an object of type
unsigned long long int.
Table 1.2 lists constants that describe the attributes of floating-point
data types.
Table 1.2 Constants describing attributes of floating-point
numeric types
Constant Value Description
FLT ROUNDS 1 Rounding is always performed toward the
nearest integral value.
DBL_DIG 15 The number of digits of decimal precision
for type double.
DBL_MANT DIG 53 The number of bits used to represent the
mantissa for type double.
DBL_MAX_10_EXP 308 The maximum decimal exponent for type

double.

Palm OS Protein C/C++ Compiler Language & Library Reference 7

Language Overview

Limitations
Table 1.2 Constants describing attributes of floating-point
numeric types

Constant Value Description

DBL_MAX EXP 1024 The maximum binary exponent for type
double.

DBL_MIN_ 10 EXP -308 The minimum decimal exponent for type
double.

DBL_MIN EXP -1021 The minimum binary exponent for type
double.

DECIMAL DIG 17 The number of decimal digits to which any
floating-point number of type long
double can be rounded, and back, without
changing its value.

FLT DIG 6 The number of decimal digits of precision
for type float.

FLT MANT DIG 24 The number of bits in the mantissa for type
float.

FLT_MAX_ 10_EXP 38 The maximum decimal exponent for type
float.

FLT_MAX_ EXP 128 The maximum binary exponent for type
float.

FLT MIN_10_EXP -37 The minimum decimal exponent for type
float.

FLT_MIN_EXP -125 The minimum binary exponent for type
float.

FLT_RADIX 2 The exponent radix.

LDBL_DIG 15 The number of decimal digits of precision
for type long double.

LDBL_MANT DIG 53 The number of bits in the mantissa for type

long double.

8 Palm OS Protein C/C++ Compiler Language & Library Reference

Language Overview
Limitations

Table 1.2 Constants describing attributes of floating-point
numeric types

Constant Value Description

LDBL_MAX 10 _EXP 308 The maximum decimal exponent for type
long double.

LDBL_MAX EXP 1024 The maximum binary exponent for type
long double.

LDBL_MIN 10 EXP -308 The minimum decimal exponent for type
long double.

LDBL_MIN_ EXP -1021 The minimum binary exponent for type

DBL_MAX

FLT MAX

LDBL_ MAX

DBL_EPSILON

DBL_MIN

FLT EPSILON

FLT MIN

LDBL_EPSILON

LDBL_ MIN

1.797693134862
31571e+308

3.40282347e+38

1.797693134862
31571e+308

2.220446049250
3131e-16

2.225073858507

20138e-308

1.19209290e-7

1.17549435e-38

2.220446049250
3131e-16

2.225073858507
20138e-308

long double.

The maximum value that can be
represented by type double.

The maximum value that can be
represented by type float.

The maximum value that can be
represented by type long double.

The smallest value such that 1.0 +
DBL_EPSILON is not equal to 1.0 for type
double.

The minimum value that can be
represented by type double.

The smallest value such that 1.0 +
FLT EPSILON is not equal to 1.0, for type
float.

The minimum value that can be
represented by type float.

The smallest value such that 1.0 +
DBL_EPSILON is not equal to 1.0 for type
long double.

The minimum value that can be
represented by type long double.

Palm OS Protein C/C++ Compiler Language & Library Reference 9

Language Overview
Limitations

10 Palm OS Protein C/C++ Compiler Language & Library Reference

2

Language Elements

This chapter describes the Palm OS® compiler’s C/C++ language
differences, as compared to the ANSI standard. The following
language elements of C and C++ are described:

e Lexical Elements

* Preprocessor Directives

¢ Predefined Constants

Lexical Elements

This section describes the following lexical elements of C and C++:
* Character Set

¢ Comments

* Tokens

* Identifiers

* Keywords

¢ Constants

¢ Operators

* Separators

Character Set

The Palm OS compiler only specifically supports the ASCII
character set for input, although the compiler is intended to be 8-bit
neutral. The following lists the basic character set that is available at
both compile and run time:

* The uppercase and lowercase letters of the English alphabet
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Palm OS Protein C/C++ Compiler Language & Library Reference 11

Language Elements
Lexical Elements

The decimal digits 0 through 9
0123456789
The following graphic characters:

VU #ESE () R+, -/ s <>2 [\] _
{}

The caret (") character

The split vertical bar (|) character

The space character (' ')

The control characters representing newline, horizontal tab,
vertical tab, and form feed.

The number sign (#) character is used for preprocessing only, and
the underscore (_) character is treated as a normal letter.

Comments

The following comments within C/C++ source code are permitted:

® The /* (slash, asterisk) characters, followed by any sequence
of characters (including newlines), followed by the
* / (asterisk, slash) characters.

* The // (two slashes) characters followed by any sequence of
characters. A newline not immediately preceded by a line-
continuation (\) character terminates this form of comment.
This kind of comment is commonly called a single-line
comment.

You can put comments anywhere the language allows white space.

The Palm OS compiler also recognizes the following comments
within C/C++ source code, used to affect warning messages
generated by the compiler:

/ * ARGSUSED*/
When placed before a function definition, this comment
suppresses compiler warnings about unused parameters in
functions.

/ *NOTREACHED* /
When inserted at the beginning of a block of code that
appears unreachable by the compiler, this comment
suppresses the “unreachable code” warning.

12 Palm OS Protein C/C++ Compiler Language & Library Reference

Language Elements
Lexical Elements

Tokens

Source code is treated during preprocessing and compilation as a
sequence of tokens. There are five different types of tokens:

e Identifiers
e Keywords
Constants
* Operators

® Separators

Adjacent identifiers, keywords, and literals must be separated with
white space. Other tokens should be separated by white space to
make the source code more readable. White space includes blanks,
horizontal and vertical tabs, newlines, form feeds, and comments.

Identifiers

An identifier consists of an arbitrary number of letters or digits;
however, it must not begin with a digit and it must not have the
same spelling as a keyword. Identifiers provide names for the
following language elements:

¢ Functions

¢ Data objects

e Labels

* Enumerated tags
e Variables

¢ Macros

* Typedefs

e Structure members

¢ Union members

Palm OS Protein C/C++ Compiler Language & Library Reference 13

Language Elements
Lexical Elements

Keywords
Keywords are identifiers reserved by the language for special use.

* Refer to the C language standard: ANSI/ISO/IEC 9899:1999
specification for a list of the keywords common to the C
language.

* Refer to the C++ language standard: ANSI/ISO/IEC
14882:1998 specification for a list of the keywords common to
the C++ language.

Extension keywords
The Palm OS compiler also recognizes the following keywords:

__align(n)
nmay be 1, 2, 4, 8, or 16. When applied to a global object,
guarantees that the object is emitted with at least the
specified alignment. When applied to a type declaration (e.g.,
typedef or struct), applies to all global objects that are
instances of that type. Note: This keyword does not alter the
packing within a structure or modify what code is used to
access through a pointer. Use __pack or #pragma pack for
the former, and _ packed for the latter.

asm
The asm keyword is used to pass information through the
compiler to the assembler. The Palm OS compiler permits
assembler code to be inlined using the keywords asm, _asm,
and __asm. The asm keyword has its normal C99 and C++
behavior; in addition, when used as the first keyword in a
function definition, the contents of the function are all taken
as assembly instructions and the function is emitted “naked,”
without a prologue or epilogue that pushes or pops registers
from the stack. (A ‘bx Ir” return instruction is placed after
your code, in case you do not explicitly return.) An asm
function is called in the same way as any function; its
arguments are in registers r0-r3 and on the stack, as is
defined by ATPCS:

14 Palm OS Protein C/C++ Compiler Language & Library Reference

Language Elements
Lexical Elements

asm int func (int a, int b) {
add r0, r0, rl // return a+b

}

The “inline” qualifier can be used with asm functions to
indicate that the body of the asm function should be inserted
at each call-site. (The asm function should not explicitly
return or use labels. As in the above example, it should fall
off the end to return execution to the caller.)

Supported use of asm routines is limited to “nop,” as an
inline asm statement and relatively small asm functions that
do not use labels.

__asm
Followed by curly brackets, indicates a multi-line inline
assembly block. Otherwise, indicates inline assembly until
the end of the current line.

__inline
An exact alias of the normal inline keyword, in C99 or
C++, depending on which is being compiled.

__inté64
Alias for long long type.

__pack(n)
nmaybe0, 1, 2,4, 8, or 16. Applied to a structure definition,
this keyword changes the packing in effect for that structure.
This keyword overrides any #pragma pack() setting for
this structure. If zero (0) is selected, natural alignment is used
(not the current #pragma pack value).

___packed
Hybrid modifier: when applied to a structure definition,
forces the packing to be 1-byte aligned. When applied to a
pointer, forces all accesses through that pointer to assume an
unaligned pointer. (This is also the case when a pointer to a
___packed structure is used.)

__pure
In function prototypes modifying the function name, this
keyword indicates that the function has no side-effects and
relies only on its input parameters. Currently, the Palm OS
compiler ignores this keyword.

Palm OS Protein C/C++ Compiler Language & Library Reference 15

Language Elements
Lexical Elements

__ror32(x, y)
A built-in operator that returns the 32-bit unsigned integer x
rotated right by y bits.

__value in regs
When this keyword is applied to a function prototype or
declaration, states that the return value of the function, if it is
a small structure (16 bytes or less), is passed in processor
registers 10-r3. (Normally structure return values are passed
by pointer in a hidden first argument.)

This calling convention keyword is potentially useful to
interoperate with special routines.

Example:

struct div_result {int div, rem;};
struct div_result _ value_in regs do_div (int x, int y);

weak
In declarations of external objects (functions or data), this
modifier indicates that the object is not required and the
linker should fix up references if the object is not available
during linkage.

Constants

The value of any constant must be in the range of representable
values for its type. The C language contains the following types of
constants (also called literals):

¢ Integer (decimal, octal, or hexadecimal notation)

Floating-point (double, float, long double, or
hexadecimal notation)

Character (one or more characters in apostrophes)

String (sequence of characters enclosed in double quotes)

e Enumeration

Operators
Operators can be classified as:

e Postfix

16 Palm OS Protein C/C++ Compiler Language & Library Reference

Language Elements
Lexical Elements

o Prefix

e Normal

¢ Boolean

¢ Assignment
¢ C++ Compatibility

Postfix

Postfix operators are operators that are suffixed to an expression,
such as, operand++.

Prefix

Prefix operators are operators that are prefixed to an expression,
such as, ++operand or !operand.

Normal

There are several normal operators that return the result defined for

each:

+

*

/
%
&
|

>>

<<

Boolean

addition
subtraction
multiplication
division
modulo

AND

OR

XOR

shift right
shift left

The Boolean operators return either 1 (true) or O (false).

&&

<

logical AND
logical OR

less than

Palm OS Protein C/C++ Compiler Language & Library Reference 17

Language Elements
Lexical Elements

> greater than

<= less than equal

>= greater than equal

== equal

!= notequal
Assignment

An assignment operator stores the value of the right expression into
the left expression:

= a = b assigns the value of b into a

*= a *= bisequivalenttoa = a * b

/= a /= bisequivalenttoa = a / b

%= a %= bisequivalenttoa = a % b

+= index += 2isequivalentto index = index + 2
-= index -= 3isequivalentto index = index - 3
<<= nl <<= n2isequivalenttonl = nl << n2

>>= nl >>= n2isequivalenttonl = nl >> n2

&= mask &= 2isequivalenttomask = mask & 2

"= tl "= t2isequivalenttotl = t1 "~ t2

|= flag |= ONisequivalentto flag = flag | ON

C++ Compatibility
There are three new compound operators in C++:

.* Binds its second operand, which shall be of type
“pointer to member of T” (where T is a completely
defined class type) to its first operand, which shall be
of class T.

->* Binds its second operand, which shall be of type
“pointer to member of T” (where T is a completely
defined class type) to its first operand, which shall be
of type “pointer to T” or “pointer to a class of which T
is an unambiguous and accessible base class.”

18 Palm OS Protein C/C++ Compiler Language & Library Reference

Language Elements
Lexical Elements

Allows a type, an object, a function, an enumerator, or
a namespace declared in the global namespace to be
referred to even if its identifier has been hidden.

Palm OS Protein C/C++ Compiler Language & Library Reference 19

Language Elements
Preprocessor Directives

Separators

Separators can include:
() parenthesis

[1 Dbrackets

{

} braces
’ comma
; semi-colon
colon

Preprocessor Directives

Preprocessor directives instruct the preprocessor to act on the text of
the program. Preprocessor directives begin with the # token
followed by a preprocessor keyword. The # token must appear as
the first character that is not white space on a line. The # is not part
of the directive name and can be separated from the name with
white space. Except for some #pragma directives, preprocessor
directives can appear anywhere in a program.

#pragma

A pragma directive is an implementation-defined instruction to the
compiler. This section describes the #pragma commands that the
Palm OS compiler recognizes.

#pragma once
Indicates that a source file (usually a header) need not be
included again. (Thus an #include of the same header has
no effect.) If normal header guards are used, the compiler
optimizes them into a #pragma once:

#pragma once // unnecessary
#ifndef MY HEADER GUARD
#define MY HEADER GUARD

// header contents

#endif /* MY HEADER GUARD */

20 Palm OS Protein C/C++ Compiler Language & Library Reference

Language Elements
Predefined Constants

#pragma pack(n)
Sets current structure packing to n, where nis 1, 2, 4, 8, or 16.

#pragma pack()
Resets current structure packing to natural alignment.

#pragma pack (pop [,name] [,n])
If name is supplied, pops back to the position on the stack
with that name, otherwise pops a single value off the stack. If
nis supplied, sets the alignment to that value after popping.

#pragma pack (push [,name] [,n])
Pushes the current structure packing onto a stack. If name (an
identifier) is supplied, names the prior position on the stack.
If nis supplied, sets the packing to that value, after pushing
the original value.

#pragma weak name
Same as declaring the global object with the external name of
name with the WEAK attribute.

Predefined Constants

This section describes the predefined constants provided by the
Palm OS Protein C/C++ Compiler.

__APGE___
Defined as 1.

__APOGEE___
Defined as 1.

__arm
Defined as 1.

_BOOL
Defined in C++ mode when bool is a keyword.
___cplusplus
Defined in C++ mode.

c_plusplus
Defined in default C++ mode, but not in strict mode.

DATE
Defined in all modes to the date of the compilation in the
form “Mmm dd yyyy.”

Palm OS Protein C/C++ Compiler Language & Library Reference 21

Language Elements
Predefined Constants

__EDG__
Always defined.

__EDG_VERSION
Defined to an integral value that represents the version
number of the front end. For example, version 2.30 is
represented as 230.

___embedded_cplusplus
Defined as 1 in embedded C++ mode.

___EXCEPTIONS
Defined in C++ mode when exception handling is enabled.

_PACC_VER
0xMmmrrbbb, where (M=Major, m=minort, r=rev, b=build).
For example, 0x1000000D, for 1.0.0.13.

__ PALMSOURCE___
Defined as 1.

__PSI__
Defined as 1.

__RTTI
Defined in C++ mode when RTTI is enabled.

___SIGNED_CHARS
Defined when plain character is signed. (By default, the
character type is unsigned.)

__STDC__
Defined in ANSI C mode and in C++ mode. In C++ mode,
the value may be redefined.

__STDC_HOSTED
Defined in C99 mode with the value zero (0).

___STDC_VERSION
Defined in ANSI C mode with the value 199901L.

TIME
Defined in all modes to the time of the compilation in the
form “hh:mm:ss.”
_WCHAR_T
Defined in C++ mode when wchar_t is a keyword.

22 Palm OS Protein C/C++ Compiler Language & Library Reference

7N\
palmsource
) g

Part Il
C/C++ Compiler
Library Reference

This part is organized in the following manner: general library and
runtime function information appears first, followed by detailed
header file information that documents the supported structures,
runtime functions, and macros. Note that header file chapters,
which are organized alphabetically, follow the “Runtime Library
Functions” chapter, which overviews the supported runtime
functions provided by the operating system and the unsupported
runtime functions not implemented by Palm OS.

STLport/iostream 25
Palm OS-Specific Libraries 27
Runtime Library Functions 29
asserth. 39
ctypeh.00 oo 41
errnoh. L0 0L oo 43
ioctlth 45
isob46.h L L 47
localeh.o 49
math.h0 51
PalmMath.h. 55
stdargho o000 000000 61
stddefho 63
stdioh 65

stdlibh. oo oo 67

stringsh00 00000 73
timeh Lo 75
timeh L Lo 77
uioh.o 83

3
STLport/iostream

The Palm OS® Protein C/C++ Compiler Suite includes and supports
the STLport implementation of the C++ standard template library.

Specific details regarding the implementation of the C++ STLport/
iostream material is not currently documented in this manual; for
documentation, visit http:/ /www.stlport.org/doc/index.html.
However, the following information may be useful:

* iostreams are implemented in terms of stdio; cout is
connected to stdout, cerr is connected to stderr, and
cinis connected to stdin.

* no locale functionality beyond the C locale is supported.

¢ all other pieces of STL functionality are believed to be
supported.

For more information on the functionality provided by the C++
standard library, please consult documentation on the C++
language, such as The C++ Programming Language, Third Edition, by
Bjarne Stroustrup, or the ANSI/ISO specification, available as
ANSI/ISO/IEC document 14882:1998.

Palm OS Protein C/C++ Compiler Language & Library Reference 25

STLport/iostream

26 Palm OS Protein C/C++ Compiler Language & Library Reference

4

Palm OS-Specific
Libraries

An integral part of the Palm OS® Protein C/C++ Compiler are the
standard headers, startup code, and run-time libraries. The supplied
run-time libraries serve several purposes:

¢ cpp — The cpp libraries implement objects common to any
C++ standard library (e.g., the standard exception objects).

¢ eabi — The eabi libraries implement preliminary ARM EABI
support on top of Palm OS. They implement the necessary
EABI support routines, translating them into Palm OS
specific routine calls.

¢ pacc — The pacc libraries implement objects and routines
that are unique or particular to the Palm OS compiler and are
not required or useful with any other tool chain.

¢ STLport — The C++ standard template library features
thread safety, improved memory utilization, improved run-
time efficiency, and new data structures, including hash
tables.

¢ support — This is an implementation of the floating-point
and integral support functions. The Palm OS compiler
automatically links with this library, however, the FloatMgr
library should also be linked.

Palm OS Protein C/C++ Compiler Language & Library Reference 27

Palm OS-Specific Libraries
The Palm OS Implementation of the Standard C Library (libc)

The Palm OS Implementation of the Standard C

Library (libc)

The Palm OS implementation of the standard C library is derived
from the NetBSD ARM source base, with some modification due to
the non-Unix nature of Palm OS:

In the future, it may be possible to direct stdout/stdin
operations through other I/O devices; no timeline for this
has been stated.

The C99 header <complex.h> is not supported in this
version of 1ibc. Applications using complex numbers
should use STLport or another ANSI compliant C++ library.

The C99 header <fenv . h> is not supported in this version of
libc. MathLib does not raise floating exceptions and does
not respond to varying rounding modes. Checking errno
and the return value can handle exceptional cases.

There is also no <set jmp.h> implementation. The
<ErrTryCatch.h> header can provide much of the same
functionality, but the standard C interface is not yet
supported.

In addition, the following POSIX header files are not
documented in this reference because they are either fairly
self-explanatory or do not contain any runtime library
functions that are provided by the operating system.

- <climits.h>

— <inttypes.h>
- <limits.h>

— <namespace.h>
— <paths.h>

— <signal.h>

— <stdint.h>

— <termios.h>

28 Palm OS Protein C/C++ Compiler Language & Library Reference

Runtime Library
Functions

Supported Functions

The following is an alphabetical list of runtime library functions, as
defined in the POSIX headers for Palm OS® 6.1, which are explicitly
provided by the operating system. For detailed information about
any of these functions, see the individual header file chapters that
follow, beginning with Chapter 6, “assert.h.”

posix/ctype.h
isalnum() isgraph() isupper()
isalpha() islower() isxdigit()
isblank() isprint() tolower ()
iscntrl() ispunct() tolower ()
isdigit() isspace() toupper ()

posix/math.h
abs () expf () logf ()
acos () expl() logl()
acosf () expml () modf ()
acosh() fabs() modff ()
acosl() fabsf () modfl ()
asin() fabsl() nextafter()
asinf () floor() pow ()

Palm OS Protein C/C++ Compiler Language & Library Reference 29

Runtime Library Functions

Supported Functions

asinh()
asinl()
atan()
atan2()
atan2f ()
atan2l()
atanf ()
atanh()
atanl()
cbrt()
ceil()
ceilf ()
ceill()
copysign()
cos ()
cosf()
cosh()
coshf ()
coshl ()

cosl()

exp()

asprintf ()
clearerr()

fclose()

floorf()
floorl()
fmod ()

fmodf ()
fmodl ()
frexp()
frexpf ()
frexpl()
hypot ()
hypotf ()
hypotl()
ilogb()
ldexp()
ldexpf ()
ldexpl ()
log()

logl0()
logl0f ()
logl0l()
loglp()
logb()

posix/stdio.h

freopen()
fscanf ()

fseek()

powf ()
powl ()
remainder ()
rint()
scalbn()
sin()
sinf ()
sinh()
sinhf ()
sinhl ()
sinl()
sqrt()
sqrtf()
sqrtl()
tan()
tanf ()
tanh()
tanhf ()
tanhl ()
tanl()

rewind()
scanf ()

setbuf ()

30 Palm OS Protein C/C++ Compiler Language & Library Reference

Runtime Library Functions

Supported Functions
fdopen() fseeko() setbuffer()
feof () fsetpos() setlinebuf ()
ferror () ftell() setvbuf ()
fflush() ftello() snprintf ()
fgetc() fwrite() sprintf ()
fgetln() getc() sscanf ()
fgetpos() getchar () ungetc()
fgets () gets () vasprintf ()
fileno() getw() viprintf ()
fopen() perror () vprintf ()
fprintf () printf () vscanf ()
fpurge() putc() vsnprintf ()
fputc() putchar() vsprintf ()
fputs () puts() vsscanf ()
fread() putw()

posix/stdlib.h

abs () inplace realloc() random()
atof () labs() realloc()
atoi() 1div() srand()
atol() llabs() srandom()
atoll() malloc() strtod()
bsearch () gsort() strtol()
calloc() gsort r() strtoll()
div() rand() strtoul()
free() rand r() strtoull ()

Palm OS Protein C/C++ Compiler Language & Library Reference 31

Runtime Library Functions

Supported Functions

posix/string.h
memchr () strcspn() strncpy ()
memcmp () strdup() strpbrk()
memcpy () strerror() strrchr()
memmove () strerror r() strsep()
memset () strlcat() strspn()
strcat() strlcpy() strstr()
strchr() strlen() strtok()
strcmp () strncat() strtok r()
strcoll() strncmp () strxfrm()
strcpy ()

posix/strings.h
bcopy () strcasecmp()
bzero() strncasecmp ()

posix/time.h
asctime() difftime() mktime ()
asctime r() gmtime () strftime()
clock() gmtime r() time()
ctime() localtime() time()
ctime r() localtime r()

posix/sys/ioctl.h
ioctl()

32 Palm OS Protein C/C++ Compiler Language & Library Reference

Runtime Library Functions
Unsupported Functions

posix/sys/PalmMath.h

lceilf () 1floorf () sincosf ()

posix/sys/time.h

getcountrycode() palm seconds to time t()
getgmtoffset() settime()

gettimezone() settimezone()
hastimezone() system real time()
localtime tz() system time()

mktime tz() time t to palm seconds()

posix/sys/uio.h

readv () writev()

Unsupported Functions

The following is an alphabetical list of runtime library functions,
sorted by header file name, declared in the POSIX headers that are
not implemented by the operating system.

posix/ctype.h

isascii() toascii()
(this is handled via a #define) (this is handled via a #define)

posix/inttypes.h

strtoimax() strtoumax()

posix/locale.h

setlocale()

Palm OS Protein C/C++ Compiler Language & Library Reference 33

Runtime Library Functions
Unsupported Functions

posix/math.h
erf() islessequal() modf ()
erfc() islessgreater() nan()
exp2() isunordered() nearbyint ()
fdim() lgamma () nexttoward()
fma() llrint() remquo ()
fmax () llround() round ()
fmin() log2() scalbln()
isgreater|() lrint() tgamma ()
isgreaterequal () lround() trunc()

isless()

In addition, any of the above functions that have float overrides (suffixed with an “t”)
or long double overrides (suffixed with an “1”) are also unsupported. For example,

exp2f () and exp21().

posix/signal.h
kill() sigblock() sigpending()
killpg() sigdelset () sigprocmask()
psignal() sigemptyset () sigreturn()
raise() sigfillset() sigsetmask()

sigaction()

sigaddset()

siginterrupt()

sigismember ()

sigstack()

sigsuspend()

sigaltstack() sigpause() sigvec()
posix/stdio.h

ctermid() getc_unlocked() remove ()

cuserid() getchar unlocked() rename ()

34 Palm OS Protein C/C++ Compiler Language & Library Reference

Runtime Library Functions
Unsupported Functions

flockfile() pclose() tempnam()
ftrylockfile() popen() tmpfile()
funlockfile() putc_unlocked() tmpnam()
funopen() putchar unlocked()
posix/stdlib.h
a64l() drand48() mktemp ()
abort () erand48() mrand48()
alloca() exit() nrand48 ()
atexit() getbsize() putenv ()
cfree() getenv() qdiv ()
cgetcap() getloadavg() radixsort()
cgetclose() heapsort () realpath()
cgetent () initstate() seed48()
cgetfirst() jrand48 () setenv ()
cgetmatch() l64a() setkey ()
cgetnext () lcong48() setstate()
cgetnum() 11div() sradixsort()
cgetset () lrand48() srand48()
cgetstr() mergesort () ttyslot ()
cgetustr() mkdtemp () unsetenv ()
daemon () mkstemp () valloc()
devname ()

memccpy ()

posix/string.h

Palm OS Protein C/C++ Compiler Language & Library Reference 35

Runtime Library Functions
Unsupported Functions

posix/strings.h
bemp () index ()
ffs() rindex()

posix/termios.h

tcdrain() tcflush() tcsendbreak()
tcflow() tcgetpgrp() tcsetpgrp()
posix/time.h
clock getres() strptime() timer getoverrun()
clock gettime() time2posix() timer gettime()
clock settime() timelocal() timer settime()
nanosleep() timeoff () timezone()
offtime() timer create() tzset ()
posix2time() timer delete() tzsetwall()

posix/wchar.h

fwide() wcsncat () wcstoul ()

wcscat () wcsnemp () wcswidth()
wcschr () wecsnepy () wewidth ()

wcsemp () wespbrk() wmemchr ()

wcscpy () wcsrchr () wmememp ()

wcscspn() wcsspn() wmemcpy ()

wcslcat () wesstr() wmemmove ()
wcslcepy () wcstod() wmemset ()

wcslen() wecstol ()

36 Palm OS Protein C/C++ Compiler Language & Library Reference

Runtime Library Functions
Unsupported Functions

posix/machine/arm/param.h

delay()
posix/sys/bswap.h
bswapl6 () bswap32() bswap64 ()
posix/sys/socket.h
socketpair ()
posix/sys/stat.h
chflags() lchflags() mkfifo()
chmod () lchmod() mknod ()
fchflags|() Istat() stat ()
fchmod () mkdir () umask ()
fstat()
posix/sys/time.h
adjtime() itimerdecr () ratecheck()
adjtimel() itimerfix() setitimer()
clock settimel() lutimes() settimeofday()
futimes() microtime () settimeofdayl ()
getitimer () ppsratecheck() utimes ()
gettimeofday ()
posix/sys/uio.h
preadv () pwritev()

Palm OS Protein C/C++ Compiler Language & Library Reference 37

Runtime Library Functions
Unsupported Functions

38 Palm OS Protein C/C++ Compiler Language & Library Reference

6

assert.h

The <assert.h> header defines the assert () macro, which is
used for debugging purposes. It also refers to another macro,
NDEBUG, which is defined elsewhere.

Functions and Macros

assert Macro

Purpose Outputs a diagnostic message to standard errorand stops the
program if a test fails.

Prototype assert (condition)

Parameters — condition
An expression to test; if the result of the expression is false,
the diagnostic message is displayed and the program
terminates. If the result is true, this macro has no effect.

Example In the following example, the program will terminate if the data
buffer could not be allocated.

char *buffer = malloc(150);
assert(buffer);

Palm OS Protein C/C++ Compiler Language & Library Reference 39

assert.h
assert

40 Palm OS Protein C/C++ Compiler Language & Library Reference

ctype.h

The <ctype.h> header defines several functions useful for
classifying and converting characters. All of the functions declared
in this header are part of the C99 standard.

NOTE: None of the functions in <ctype.h> are internationally
safe. They work only for 7-bit ASCII characters. Many of these
functions have Palm OS specific equvalents that are
internationally safe. These are listed in Table 7.1.

Table 7.1 Functions with internationally safe equivalents

Function Palm OS specific equivalent
isalnum() TxtCharIsAlNum()
isalpha() TxtCharIsAlpha()
iscntrl() TxtCharIsCntrl()
isdigit() TxtCharIsDigit()
isgraph() TxtCharIsGraph()
islower() TxtCharIsLower ()
isprint() TxtCharIsPrint()
ispunct() TxtCharIsPunct()
isspace() TxtCharIsSpace()
isupper() TxtCharIsUpper/()
isxdigit() TxtCharIsHex()

Palm OS Protein C/C++ Compiler Language & Library Reference 41

ctype.h

Table 7.1 Functions with internationally safe equivalents

Function Palm OS specific equivalent

tolower () StrToLower () and
TxtTransliterate()

toupper () TxtTransliterate()

For details on the internationally safe functions listed above, see the
book Exploring Palm OS: Text and Localization.

42 Palm OS Protein C/C++ Compiler Language & Library Reference

8

errno.h

The <errno.h> header provides the global error code variable
errno.

Global Variables

Purpose
Declared In
Prototype
Comments

errno Variable
Global error code variable.
posix/errno.h
extern int errno

The errno variable is used by many functions to return error
values. The value of errno is defined only after a call to a function
for which it is explicitly stated to be set and until it is changed by the
next function call. The value of errno should only be examined
when it is indicated to be valid by a function’s return value.
Programs should obtain the definition of errno by the inclusion of
<errno.h>. It is unspecified whether errno is a macro or an
identifier declared with external linkage.

The errno variable has a value of zero (0) at the beginning. If an
error occurs, then this variable is given the value of the error
number. In some cases, the behavior of the math library with regard
to errno is implementation defined.

Nothing in the <errno.h> header is specific to Palm OS®. The
specific numeric values associated with the error names are not
portable and should be treated as opaque by applications.

Palm OS Protein C/C++ Compiler Language & Library Reference 43

errno.h
errno Variable

44 Palm OS Protein C/C++ Compiler Language & Library Reference

ioctl.h

The <ioctl.h> header defines a function to manipulate the
underlying device parameters of special files. It defines the
ioctl () function, which is a standard Posix function.

Palm OS Protein C/C++ Compiler Language & Library Reference 45

ioctl.h

46 Palm OS Protein C/C++ Compiler Language & Library Reference

Purpose
Declared In
Constants

10
i50646.h

The <iso0646 .h> header defines several constants that expand to
the corresponding tokens, useful for programming in ISO 646
variant character sets.

Operators
Defines constants that expand to the corresponding tokens.
posix/iso646.h

#define and &&
The operator &&.

#define and eq &=
The operator &=.

#define bitand &
The operator &.

#define bitor |
The operator |.

#define compl ~
The operator ~.

#define not !
The operator !.

#define not eq !=
The operator !=.

#define or ||
The operator | |.

#define or _eq |=
The operator |=.

A

#define xor
The operator ~.

A

#define xor eq
The operator *=.

Palm OS Protein C/C++ Compiler Language & Library Reference 47

is0646.h
Operators

48 Palm OS Protein C/C++ Compiler Language & Library Reference

11

locale.h

The <locale.h> header support in 1ibc has not been integrated
with Palm OS® and thus should not be used. The macros and

functions defined in this header do not work as expected and
should be avoided.

Palm OS Protein C/C++ Compiler Language & Library Reference 49

locale.h

50 Palm OS Protein C/C++ Compiler Language & Library Reference

12
math.h

The <math.h> header defines several mathematical functions.

This header is new with Palm OS® Protein. It is a broad subset of
section 7.12 of the C language standard ANSI/ISO/IEC 9899:1999.

MathLib is part of SystemLib. To use MathLib, simply include the
<math.h> header in your source files.

Supported features

The Palm OS Protein C/C++ Compiler supports the use of infinity
and NaN (not-a-number) values.

The following C99 macros are supported in <math.h>:
- FLT_ EVAL
- FP_TILOGBNAN
- FP_ILOGBO
* FP_INFINITE
- FP_NAN
- FP_NORMAL
* FP_SUBNORMAL
- FP_ZERO
- HUGE_VAL
- HUGE_VALF
- HUGE_VALL
+ INFINITY
* MATH ERREXCEPT
- math _errhandling
* MATH ERRNO
* NAN

Palm OS Protein C/C++ Compiler Language & Library Reference 51

math.h

Differences from the C99 specification

All of <math.h> as specified in the C language standard
ANSI/ISO/IEC 9899:1990 is provided as well as most of the
extensions specified in 1999 standard. Parts of <math.h> that
are not supported are listed under the line:

#ifdef _ USE_C99 EXTENSIONS

Functions in this section are preprocessed out by default and
are not tested or supplied by PalmSource.

Parallel sets of functions for float and long double
arguments types are defined only for 1989 ANSI C functions.

Constraints

Existing 68K applications must continue to supply the 68K
MathLib if required by the application.

There are cases in which the behavior of the math library with
respect to the errno error reporting mechanism are
implementation defined. For details on how the Palm OS
Protein C/C++ Compiler handles errors in these cases, see
“Behavior of errno” on page 53.

The float and long double overloads as specified in
section 26.5 of the ANSI C++ standard are not provided.

The float and long double counterparts suffixed by “f”
and “1” for the functions defined in section 7.12 of the 1989
ANSI C language standard are supported. A few of the float
counterparts have Palm OS implementations, but most of
these simply cast and return the double version.

A handful of single precision counterparts are provided as a
high performance alternative to their double equivalents.
However, there are some additional deviations from the
standard that were made to achieve high performance,
including;:

— none of the single precision functions set the global
variable errno.
— sqgrtf () flushes denormals to zero (0).

— ceilf(-0) is 0 not -0 as specified in Annex F.9.6.1 of the
ANSI standard.

52 Palm OS Protein C/C++ Compiler Language & Library Reference

math.h

— hypotf () does not follow the spec for NaNs and
infinities.
¢ The library, 1ibm. a, is no longer supported and must be
removed from existing projects.

Behavior of errno

There are two situations in which case an infinite result can occur as
the result of an operation. The first is when a range error occurs,
where the computation using finite arguments causes a result that
lies outside the range of values that can be represented by the data
type. The second case is when the result is infinite because the
mathematics involved actually results in an infinite result (such as
when an input argument is infinite). In this case, there is no range
error, but the result is still infinite.

Some functions only have two ways to result in an infinite value—
either the result is infinite, or the result cannot be represented due to
its size. In this case, errno can be useful, because it will indicate no
error if the result is in fact infinity, or ERANGE if a range error
occurred.

On the other hand, if the function has multiple ways in which
infinity can be the result, errno cannot be used as a method for
determining whether or not the value is legitimate or not.

For this reason, the Palm OS Protein C/C++ Compiler handles
errno in these cases as follows:

errno is set only when it can be used to definitively distinguish
between multiple ways of arriving at the same return value. One
should not expect errno to be set in cases where it will not help
determine the reason why the result was achieved. See Table 12.1.

Table 12.1 errno handling for specific cases

Function Name Sets errno Explanation

hypot () ERANGE Overflow occurs when hypot (finite
but large, finite) is called.

scalbn() / no Too many ways for infinity to result

ldexp()

Palm OS Protein C/C++ Compiler Language & Library Reference 53

math.h

Table 12.1 errno handling for specific cases

Function Name Sets errno Explanation

nextafter() ERANGE nextafter (DBL MAX, INFINITY)

ilogb() no Both 0 and denormals have the exponent 0.

logb() / logl0() EDOM logx(0) isn't equal to logx(denormal).

/ log()

pow () ERANGE pow(finite > 0, finite large >
0) indicates that overflow occurred.
Required by section 7.12.1 of the standard.

pow (INFINITY, no Overflow does not occur, since the original

INFINITY) values were not finite.

any no Ideally, the function should propagate the

function(NaN) same NaN that was passed in, with no
additional side effects

cos(x=tinf) / EDOM Distinguishes between x being infinite or

sin(x=tinf) /
tan(x=—inf)

NaN. Also, the limit as x approaches
infinity does not exist.

54 Palm OS Protein C/C++ Compiler Language & Library Reference

Constants

Purpose

Declared In
Constants

PalmMath.h

13

The <PalmMath.h> header defines Palm OS specific mathematical

functions not specified in the ANSI/ISO standard.

Math Constants

These constants are intended to be used as 32-bit floats. These
constants should not be used as double precision arguments.
However, a new double precision version of each of these may be
created by removing the “f” suffix from the end of each decimal

string.
posix/sys/palmmath.h

#define M E 2.7182818284590452354f
Approximates the mathematical constant e.

#define M _LOG2E 1.4426950408889634074f
Approximates the mathematical constant logy(e).

#define M LOGlOE 0.43429448190325182765f

Approximates the mathematical constant log;y(e).

#define M LN2 0.69314718055994530942f
Approximates the mathematical constant log,(2).

#define M LN10 2.30258509299404568402f

Approximates the mathematical constant log,(10).

#define M PI 3.14159265358979323846f
Single precision approximation to .

#define M _PI 2 1.57079632679489661923f
Single precision approximation to wt/2.

#define M 1 PI 0.31830988618379067154f
Single precision approximation to 1/.

Palm OS Protein C/C++ Compiler Language & Library Reference 55

PalmMath.h
Math Constants

#define M PI 4 0.78539816339744830962f
Single precision approximation to /4.

#define M 2 PI 0.63661977236758134308f
Single precision approximation to 2 /.

#define M 2 SQRTPI 1.12837916709551257390f
Single precision approximation to 2/V.

#define M SQRT2 1.41421356237309504880f
Approximates the mathematical constant v2.

#define M _SQRT1 2 0.70710678118654752440f
Approximates the mathematical constant 1/v2.

#define PI M PI
Single precision approximation to .

#define PI2 M PI 2
Single precision approximation to m/2.

#define M PI 3 1.047197551196597746154f
Single precision approximation to /3.

#define M 3 PI 4 2.356194490192344928846F
Single precision approximation to 3*m/4.

#define M 5 PI_4 3.926990816987241548076f
Single precision approximation to 5*w/4.

#define M 3 PI 2 4.71238898038468985769f
Single precision approximation to 3*m/2.

#define M_7 PI 4 5.497787143782138167306f
Single precision approximation to 7*w/4.

56 Palm OS Protein C/C++ Compiler Language & Library Reference

PalmMath.h
Ifloorf

Functions and Macros

Purpose
Declared In
Prototype
Parameters

Returns

Comments
Compatibility

See Also

Purpose
Declared In
Prototype
Parameters

Returns

Comments
Compatibility

See Also

Iceilf Function

Computes the nearest 32-bit signed integer not less than x.
posix/sys/palmmath.h

int32 t lceilf (float x)

—

Value of type float to be evaluated.

Returns the nearest 32-bit signed integer not less than x. In cases
where x is out of the range of representable integers, + /-INT MAX is
returned.

Exceptions are never raised.
This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

1floorf()

Ifloorf Function

Computes the nearest 32-bit signed integer not greater than x.
posix/sys/palmmath.h

int32 t 1floorf (float x)

— x

Value of type float to be evaluated.

Returns the nearest 32-bit signed integer not greater than x. In cases
where xis out of the range of representable integers, +/-INT_MAX is
returned.

Exceptions are never raised.
This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

lceilf ()

Palm OS Protein C/C++ Compiler Language & Library Reference 57

PalmMath.h

max_c
max_c Macro
Purpose Returns the larger of two values.
Declared In posix/sys/PalmMath.h
Prototype #define max c(real floating a, real floating b)
Parameters — a
The first value to compare.
—b
The second value to compare.
Returns Returns the greater of the two input values.
Compatibility This macro can be used in C code, unlike the standard max ()
macro, which uses C++ templates.
See Also min c()
min_c Macro
Purpose Returns the lesser of two values.
Declared In posix/sys/PalmMath.h
Prototype #define min c(real floating a, real floating b)
Parameters — a
The first value to compare.
—b
The second value to compare.
Returns Returns the lesser of the two input values.
Compatibility This macro can be used in C code, unlike the standard min ()
macro, which uses C++ templates.
See Also max c()
sincosf Function
Purpose Computes an approximation to the sine (sin_val) and cosine

(cos_val) of any angle in a single call.

58 Palm OS Protein C/C++ Compiler Language & Library Reference

PalmMath.h
sincosf

Declared In posix/sys/palmmath.h

Prototype void sincosf (float angle, float *cos val,
float *sin val)

Parameters — angle
Must be specified in radians.

— cos_val
Cosine value.

— sin val
Sine value.

Returns Returns the approximation to the sine (sin val) and cosine
(cos_val) of the specified angle.

Compatibility = This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

Palm OS Protein C/C++ Compiler Language & Library Reference 59

PalmMath.h
sincosf

60 Palm OS Protein C/C++ Compiler Language & Library Reference

14
stdarg.h

The <stdarg.h> header defines several macros useful in the
creation of functions that accept a variable number of arguments.

The macros defined in this header are all part of the C99 standard.

Palm OS Protein C/C++ Compiler Language & Library Reference 61

stdarg.h

62 Palm OS Protein C/C++ Compiler Language & Library Reference

15
stddef.h

The <stddef . h> header defines the commonly used of fsetof ()
macro, which is part of the C99 standard.

Palm OS Protein C/C++ Compiler Language & Library Reference 63

stddef.h

64 Palm OS Protein C/C++ Compiler Language & Library Reference

16
stdio.h

The <stdio.h> header defines functions for performing input and
output.

The current expected behavior of the standard I/O library is to
direct stdout and stderr output to a debugger via

DbgMessage (), and to read bytes from stdin via the debugger
using DbgGetChar (). Attempting to close one of the standard files
[stdin/stdout/stderr]is not currently supported.

The functions in stdio.h are all standard 1ibc functions, and are
internationally aware, except that when printing floating-point
numbers, they do not use a local-sensitive decimal character.

Palm OS Protein C/C++ Compiler Language & Library Reference 65

stdio.h

66 Palm OS Protein C/C++ Compiler Language & Library Reference

17
stdlib.h

The <stdlib.h> header defines several general operation
functions and macros. Most of the functions defined in this header

are standard libc functions; only inplace_realloc () is specific
to Palm OS®.

NOTE: Functions that convert from strings to numbers are not
multi-byte character aware, and do not take into account locale-
sensitive settings such as the character used for decimals. Use
the Palm OS specific equivalent functions if you need to be
internationally safe.

Palm OS Protein C/C++ Compiler Language & Library Reference 67

stdlib.h

Functions and Macros

Functions and Macros

Purpose
Declared In
Prototype
Parameters

Returns

Compatibility

inplace_realloc Function

Attempts to resize the memory block without moving it.
posix/stdlib.h

void *inplace realloc (void *ptr, size t size)

— ptr
The previously allocated memory.
— size
The size, in bytes, to change to.
Returns a pointer, possibly identical to ptr, to the allocated memory
upon successful completion. Otherwise, a NULL pointer is returned,

in which case the memory referenced by ptr is still available and
intact.

This function is a Palm OS extension (not present in C99 or Unix).

68 Palm OS Protein C/C++ Compiler Language & Library Reference

18
string.h

The <string.h> header defines several functions useful for
manipulating strings (character arrays) and memory buffers.

Several standard string and memory manipulation functions have
Palm OS® specific equivalents; the equivalents are provided for
backward compatibility, but the C99 versions are preferred for
future development. See Exploring Palm OS: Memory, Databases, and
Files for details on the Palm OS specific functions. Table 18.1 lists the

C99 functions and their Palm OS equivalents.

Table 18.1 C99 functions and their Palm OS specific
equivalents

C99 Function

Palm OS Equivalent

memmove () MemMove ()
memset () MemSet ()
strcat() StrCat ()
strcmp() StrCompare()
strcoll() StrCompare()
strecpy () StrCopy ()
strerror() SysErrString()

strerror r()

SysErrString()

strlcat() StrLCat ()
strlcpy() StrLCopy ()
strlen() StrLen()

Palm OS Protein C/C++ Compiler Language & Library Reference 69

string.h

Table 18.1 C99 functions and their Palm OS specific
equivalents

C99 Function Palm OS Equivalent

strncat() StrNCat ()

NOTE: strNCat() has a different

meaning for its parameters, so a careful
code review is necessary when shifting
between strncat () and StrNCat().

strncmp() StrNCompare()
strncpy() StrNCopy ()
strstr() StrStr()

For details on SysErrString(), see Exploring Palm OS: System
Management.

The functions listed in Table 18.2 are not internationally safe.

Table 18.2 Functions that are not internationally safe

Function Name Comments

strchr() Not multi-byte aware.

strcmp () Not multi-byte aware, and not locale
sensitive.

strcspn() Not multi-byte aware.

strlcat() Not multi-byte aware.

strlcpy() Not multi-byte aware.

strncat() Not multi-byte aware; truncation can occur
in the middle of a multi-byte character.

strncmp () Not multi-byte aware or local sensitive.

strncpy() Not multi-byte aware.

70 Palm OS Protein C/C++ Compiler Language & Library Reference

string.h

Table 18.2 Functions that are not internationally safe

Function Name

Comments

strpbrk()
strrchr ()
strsep()
strspn()
strstr()
strtok()
strtok r()

strxfrm()

Not multi-byte aware.
Not multi-byte aware.
Not multi-byte aware.
Not multi-byte aware.
Not multi-byte aware.
Not multi-byte aware.
Not multi-byte aware.

Not yet implemented.

Palm OS Protein C/C++ Compiler Language & Library Reference 71

string.h

72 Palm OS Protein C/C++ Compiler Language & Library Reference

19

strings.h

The <strings.h> header defines several functions useful for
manipulating strings; these functions adhere to the Posix standard.

strcasecmp () and strncasecmp () are not internationally safe
to use; they are neither multi-byte aware nor locale sensitive. These
functions are equivalent to StrCaselessCompare () and
StrNCaselessCompare (), respectively. See the book Exploring
Palm OS: Text and Localization for details.

Palm OS Protein C/C++ Compiler Language & Library Reference 73

strings.h

74 Palm OS Protein C/C++ Compiler Language & Library Reference

20

time.h

The <time.h> header defines several functions useful for reading
and converting the current time and date.

The functions listed in Table 20.1 are not internationally safe to use.

Table 20.1 Functions that are not internationally safe

Function Comments

asctime() Not multi-byte aware, not locale sensitive,
and returns unlocalized text.

asctime r() Not multi-byte aware, not locale sensitive,
and returns unlocalized text.

ctime() Not multi-byte aware, not locale sensitive,
and returns unlocalized text.

ctime r() Not multi-byte aware, not locale sensitive,
and returns unlocalized text.

strftime() Not multi-byte aware, not locale sensitive,
and returns unlocalized text.

The functions defined in this header are all standard 1ibc
functions.

Palm OS Protein C/C++ Compiler Language & Library Reference 75

time.h

76 Palm OS Protein C/C++ Compiler Language & Library Reference

21

time.h

The <time.h> header defines several Palm OS® specific functions
useful for reading and converting the current time and date.

Constants

TZNAME_MAX

Purpose Defines the maximum length of a time zone identifier string.
DeclaredIn posix/sys/time.h
Constants #define TZNAME MAX 32

Functions and Macros

getcountrycode Function
Purpose Gets the two-byte country code for the specified time zone.
DeclaredIn posix/sys/time.h

Prototype status t getcountrycode (const char *tzname,
char *buf, size t bufsize)

Parameters — tzname
The time zone.

— buf
The buffer.

— bufsize

The size of the buffer.

Returns Returns P_OK upon successful completion; otherwise it returns
P _ERROR.

Palm OS Protein C/C++ Compiler Language & Library Reference 77

time.h

getgmtoffset
Compatibility This function is a Palm OS extension (not present in C99 or Unix).
getgmtoffset Function
Purpose Gets the difference in seconds between Greenwich Mean Time
(GMT) and local standard time.
Declared In posix/sys/time.h
Prototype int32 t getgmtoffset (const char *tznanme)
Parameters — tzname
The time zone.
Returns Returns the current GMT offset, which takes into account daylight
saving time. This difference is positive for time zones West of
Greenwich and negative for zones East of Greenwich.
Compatibility This function is a Palm OS extension (not present in C99 or Unix).
gettimezone Function
Purpose Copies the current system time zone name into buf.
Declared In posix/sys/time.h
Prototype ssize t gettimezone (char *buf, size t bufsize)
Parameters — buf
The buffer.
— bufsize
The size of the buffer.
Returns Returns the number of bytes copied into buf upon successful
completion; otherwise it returns P_ERROR.
Compatibility = This function is a Palm OS extension (not present in C99 or Unix).
See Also hastimezone(), settimezone()
hastimezone Function
Purpose Determines if the system has the specified timezone. That is, if a

timezone database is installed for the specified timezone.

78 Palm OS Protein C/C++ Compiler Language & Library Reference

time.h
mktime_tz

Declared In
Prototype
Parameters

Returns

Compatibility
See Also

Purpose

Declared In
Prototype

Parameters

Compatibility

Purpose

Declared In
Prototype

posix/sys/time.h
int hastimezone (const char *tzname)

— tzname
The time zone.

Returns P_OK upon successful completion; otherwise it returns
P_ERROR.

This function is a Palm OS extension (not present in C99 or Unix).

gettimezone(), settimezone()

localtime tz Function

Converts the specified UTC time in the time zone to a broken-down
time.

posix/sys/time.h

void localtime tz (const time t *timer,
const char *tzname, struct tm *result)

— timer
The calendar time.

— tzname
The time zone.

<— result
A tm structure.

This function is a Palm OS extension (not present in C99 or Unix).

mktime_tz Function

Converts a specified broken-down time in the time zone to UTC
time. If the tm_isdst member of the tm struct is negative, this
function tries to determine if the specified time zone is currently in
daylight saving time.

posix/sys/time.h

time t mktime tz (struct tm *tm,
const char *tzname)

Palm OS Protein C/C++ Compiler Language & Library Reference 79

time.h

palm_seconds_to_time_t

Parameters

Returns
Compatibility

Purpose

Declared In
Prototype
Parameters

Returns
Compatibility
See Also

Purpose
Declared In
Prototype
Parameters

Returns
Compatibility

— tm
A tm structure.

— tzname
The time zone.

Returns the UTC time.

This function is a Palm OS extension (not present in C99 or Unix).

palm_seconds_to_time_t Function

Takes as input the number of seconds since 1/1/1904 (old Palm
epoch) and returns the number of seconds since 1/1/1970 (Unix
epoch).

posix/sys/time.h
time t palm seconds to time t (uint32_ t seconds)

— geconds
The number of seconds.

Returns the number of seconds since 1/1/1970 (Unix epoch).
This function is a Palm OS extension (not present in C99 or Unix).

time t to palm seconds()

settime Function

Sets the system time to the specified time.
posix/sys/time.h

status_t settime (time_t time)

— time
The system time.

Returns P_OK upon successful completion.

This function is a Palm OS extension (not present in C99 or Unix).

80 Palm OS Protein C/C++ Compiler Language & Library Reference

time.h
time_t_to_palm_seconds

Purpose
Declared In
Prototype
Parameters

Returns

Compatibility
See Also

Purpose
Declared In
Prototype
Returns
Compatibility

Purpose
Declared In
Prototype
Returns

Compatibility

Purpose

settimezone Function

Sets the system’s time zone.

posix/sys/time.h

status t settimezone (const char *tzname)

— tzname
The time zone.

Returns P_OK upon successful completion; otherwise it returns
P_ERROR.

This function is a Palm OS extension (not present in C99 or Unix).

gettimezone(), hastimezone()

system_real_time Function

Gets the value of the real time clock in nanoseconds.
posix/sys/time.h

nsecs_t system real time (void)

Returns the value of the real time clock in nanoseconds.

This function is a Palm OS extension (not present in C99 or Unix).

system_time Function

Gets the value of the run time clock in nanoseconds.
posix/sys/time.h

nsecs_t system time (void)

Returns the value of the run time clock in nanoseconds.

This function is a Palm OS extension (not present in C99 or Unix).

time_t_to_palm_seconds Function

Takes as input the number of seconds since 1/1/1970 (Unix epoch)
and returns the number of seconds since 1/1/1904 (old Palm
epoch).

Palm OS Protein C/C++ Compiler Language & Library Reference 81

time.h
time_t_to_palm_seconds

Declared In posix/sys/time.h
Prototype uint32 t time t to palm seconds (time t seconds)

Parameters — seconds
The number of seconds.

Returns Returns the number of seconds since 1/1/1904 (old Palm epoch).
Compatibility = This function is a Palm OS extension (not present in C99 or Unix).
See Also palm seconds_to_time t()

82 Palm OS Protein C/C++ Compiler Language & Library Reference

22

uio.h

The <uio.h> header defines two functions useful for vector I/O
operations, as well as the iovec structure they require.

Structures and Types

iovec Struct
Purpose Defines an I/O vector; that is, a buffer address and size.
DeclaredIn posix/sys/uio.h

Prototype struct iovec {
void *iov_base;
size t iov_len;

}

Fields iov base
The base address of a memory region for input or output.

iov_len
The size of the memory pointed to by iov_base.

Functions and Macros

readv Function

Purpose Performs the same action as read (), but scatters the input data into
the iovent buffers specified by the members of the iov array:
iov[0],iov[1l],..., iov[iovcnt-1].

Declared In posix/sys/uio.h

Prototype ssize t readv (int d, const struct iovec *iov,
size t iovcnt)

Palm OS Protein C/C++ Compiler Language & Library Reference 83

uio.h
writev

Parameters

Returns

See Also

Purpose

Declared In
Prototype

Parameters

Returns

See Also

—d

The position to start reading from.
— iov

The array.

— jovent

The buffer.

Returns the number of bytes actually read and placed in the buffer.
Zero (0) is returned if end-of-file is read. Otherwise, -1 is returned
and the global variable errno is set to indicate the error.

read()

writev Function

Performs the same action as write (), but gathers the output data
from the iovent buffers specified by the members of the iov array:
iov[0],iov[1l], ... iov[iovcnt-1].

posix/sys/uio.h

ssize t writev (int d, const struct iovec *iov,
size t iovent)

—d

The position to start gathering from.
— 10V

The array.

— lovent

The buffer.

Returns the number of bytes actually written. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

write()

84 Palm OS Protein C/C++ Compiler Language & Library Reference

23

wchar.h

The <wchar.h> header is included for compliance purposes only.

None of the C wide-char (wchar_t) functionality is supported in
Palm OS. (In fact, the wchar_t type is not even used by Palm OS
since it can vary in size from 8-bits to 32-bits depending on the
compiler.) For safe manipulation of text regardless of the device’s
character encoding, use the Palm OS String and Text Managers; see
Exploring Palm OS: Text and Localization.

Palm OS Protein C/C++ Compiler Language & Library Reference 85

wchar.h

86 Palm OS Protein C/C++ Compiler Language & Library Reference

Index

Symbols ANSI/ISO/IEC 14882:1998 3
ANSI/ISO/IEC 9899:1999 3

#pragma 20 . .
align 14 ARM-Thumb Shared Library Architecture 4
_ APGE__ 21 ASHLA 4
__APOGEE__ 21 asm 14
arm 21 assert() 39
_asm 15 assert.h 39
__cplusplus 21 B
__DATE__ 21
_EDG__ 22 bitand 47
__EDG_VERSION__ 22 bitor 47
__embedded_cplusplus 22
__EXCEPTIONS 22 C
__inline 15 c_plusplus 21
_int64 15 C99 3
__pack 15 character set 11
__packed 15 climits.h 28
_ PALMSOURCE__ 22 comments 12
_PSI 22 compl 47
__pure 15 complex.h 28
__ror32 16 compute
__RTTI 22 an approximation to the sine and cosine of any
_ SIGNED_CHARS__ 22 angle 58
__STDC__ 22 the nearest 32-bit signed integer not greater
_ STDC_HOSTED__ 22 than x 57
STDC IEC 559 5 the nearest 32-bit signed integer not less than
__STDC_IEC_559_COMPLEX__ 5 x 57
__STDC_VERSION__ 22 constants
TIME 22 math 55
_ value_in_regs 16 convert » .

K 16 a specified broken-down time 79
—wed the specified UTC time 79
_BOOL 21 copy
_Complex 5 the current system time zone 78
_Imaginary 5 cpp library 27
_PACC_VER 22 ctypeh 41
_WCHAR_T 22

. D
Numerics DWAREF debugging information 4
4T architecture 4
A E
eabi library 27
and 47 errno 43
and_eq 47

Palm OS Protein C/C++ Compiler Language & Library Reference 87

errno.h 43
ErrTryCatch.h 28

F

fenv.h 28
FLT_EVAL 51
FP_ILOGBO 51
FP_ILOGBNAN 51
FP_INFINITE 51
FP_NAN 51
FP_NORMAL 51
FP_SUBNORMAL 51
FP_ZERO 51

G

get
the difference in seconds 78
the two-byte country code 77
getcountrycode() 77
getgmtoffset() 78
gettimezone() 78
global error code variable 43

H

hastimezone() 78

header files
assert.h 39
climits.h 28
complex.h 28
ctype.h 41
errno.h 43
fenv.h 28
inttypes.h 28
ioctl.h 45
iso646.h 47
limits.h 28
locale.h 49
math.h 51
namespace.h 28
PalmMath.h 55
paths.h 28
setjmp.h 28
signal.h 28
stdarg.h 61

stddef.h 63
stdint.h 28
stdio.h 65
stdlib.h 67
string.h 69
strings.h 73
termios.h 28
time.h 75,77
uio.h 83
wchar.h 85
HUGE_VAL 51
HUGE_VALF 51
HUGE_VALL 51

identifiers 13
INFINITY 51

inplace_realloc() 68

inttypes.h 28
ioctl.h 45
iostream 25
iovec 83
1SO 646 47
iso646.h 47

K
keywords 14

L

Iceilf() 57

Ifloorf() 57
libc 28, 49
libm.a 53

libraries

cpp 27
eabi 27

pacc 27

STLport 27

support 27
limits.h 28
locale.h 49
localtime_tz() 79
long long 5

88 Palm OS Protein C/C++ Compiler Language & Library Reference

M setjmp.h 28

math constants 55 Sett%me() 80
math.h 51 settimezone() 81

MATH_ERREXCEPT 51 signalh 28
math_errhandling 51 sincosf() 58
MATH_ERRNO 51 stdarg.h 61
mktime_tz() 79 std.def.h 63
stdint.h 28
N stdio.h 65
stdlib.h 67
namespace.h 28 STLport 25
NAN 51 STLport library 27
not 47 string.h 69
not_eq 47 strings.h 73
support library 27
O system_real_time() 81
operators 16 system_time() 81
or 47
or_eq 47 T
output a diagnostic message 39 technical requirements 4
termios.h 28
P the number of seconds since
pacc library 27 1/1/1904 80
palm_seconds_to_time_t() 80 1/1/1970 81
PalmMath.h 55 the value of
paths.h 28 the real time clock 81
predefined constants 21 the run time clock 81
Preprocessor 11 timeh 75,77
preprocessor directives 20 time_t_to_palm_seconds() 81
tokens 13
R tools documentation viii
readv() 83 TZNAME_MAX 77
resize the memory block inplace 68
restrictions U
on C++ 5 uio.h 83
on C99 5
on data types 6 w
wchar.h 85
S wchar_t 85
separators 20 writev() 84
set
the system time 80 X
the system’s time zone 81
xor 47

Palm OS Protein C/C++ Compiler Language & Library Reference 89

xor_eq 47

90 Palm OS Protein C/C++ Compiler Language & Library Reference

	Palm�OS® Protein C/C++ Compiler Language & Library Reference
	Table of Contents
	About This Book
	How This Book Is Organized
	Palm OS Developer Suite Documentation
	Additional Resources

	C/C++ Compiler Language Reference
	Language Overview
	C Technical Requirements
	C++ Technical Requirements
	Limitations
	Restrictions on C99
	Restrictions on C++
	Restrictions on Data Types

	Language Elements
	Lexical Elements
	Character Set
	Comments
	Tokens
	Identifiers
	Keywords
	Constants
	Operators
	Separators

	Preprocessor Directives
	#pragma

	Predefined Constants

	C/C++ Compiler Library Reference
	STLport/iostream
	Palm OS-Specific Libraries
	The Palm OS Implementation of the Standard C Library (libc)

	Runtime Library Functions
	Supported Functions
	posix/ctype.h
	posix/math.h
	posix/stdio.h
	posix/stdlib.h
	posix/string.h
	posix/strings.h
	posix/time.h
	posix/sys/ioctl.h
	posix/sys/PalmMath.h
	posix/sys/time.h
	posix/sys/uio.h

	Unsupported Functions
	posix/ctype.h
	posix/inttypes.h
	posix/locale.h
	posix/math.h
	posix/signal.h
	posix/stdio.h
	posix/stdlib.h
	posix/string.h
	posix/strings.h
	posix/termios.h
	posix/time.h
	posix/wchar.h
	posix/machine/arm/param.h
	posix/sys/bswap.h
	posix/sys/socket.h
	posix/sys/stat.h
	posix/sys/time.h
	posix/sys/uio.h

	assert.h
	Functions and Macros
	assert

	ctype.h
	errno.h
	Global Variables
	errno Variable

	ioctl.h
	iso646.h
	Operators

	locale.h
	math.h
	PalmMath.h
	Constants
	Math Constants

	Functions and Macros
	lceilf
	lfloorf
	max_c
	min_c
	sincosf

	stdarg.h
	stddef.h
	stdio.h
	stdlib.h
	Functions and Macros
	inplace_realloc

	string.h
	strings.h
	time.h
	time.h
	Constants
	TZNAME_MAX

	Functions and Macros
	getcountrycode
	getgmtoffset
	gettimezone
	hastimezone
	localtime_tz
	mktime_tz
	palm_seconds_to_time_t
	settime
	settimezone
	system_real_time
	system_time
	time_t_to_palm_seconds

	uio.h
	Structures and Types
	iovec

	Functions and Macros
	readv
	writev

	wchar.h

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

