7N\
palmsource
) g

Palm OS® Protein C/C++
Compiler Tools Guide

Palm OS® Developer Suite

Written by Eric Shepherd and Brian Maas
Technical assistance from Kevin MacDonell, Kenneth Albanowski, Flash Sheridan, Jeff Westerinen

Copyright © 2003-2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and you
may not modify this technical documentation or make any derivative work of it (such as a translation, localization,
transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION ANY
WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC.
ALSO EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, Palm OS, and certain other trademarks and logos are trademarks or registered trademarks of
PalmSource, Inc. or its affiliates in the United States, France, Germany, Japan, the United Kingdom, and other
countries. These marks may not be used in connection with any product or service that does not belong to PalmSource,
Inc. (except as expressly permitted by a license with PalmSource, Inc.), in any manner that is likely to cause confusion
among customers, or in any manner that disparages or discredits PalmSource, Inc., its licensor, its subsidiaries, or
affiliates. All other product and brand names may be trademarks or registered trademarks of their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Palm OS Protein C/C++ Compiler Tools Guide PalmSource, Inc.
Document Number 3123-002 1240 Crossman Avenue
November 15, 2004 Sunnyvale, CA 94089
For the latest version of this document, visit USA

http://www.palmos.com/dev/support/docs/. www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Table of Contents

About This Book v
How This Book Is Organized. \
Palm OS Developer Suite Documentation vi
Additional Resources00 vii
1 Understanding Palm OS Application Development 1
Building a Palm OS Application 1
Building a Palm OS Shared Library 4
2 Introducing Palm OS Compiler Tools 7
Compiler Chain: pacc, paasm, palink 8
Palm OS Librarian: palib 9
Diagnostic Tool: elfdump 10
3 Using the Palm OS Compiler Chain 11
Palm OS Protein C/C++ Compiler 12
Compiler Command Line Interface 12
Compiler Options 13
Palm OS Assembler. 21
Differences Between the Palm OS Assembler and the ARM
Assemblero 0L 21
Assembler Command Line Interface 22
Assembler Options 22
Palm OSLinker 24
Linker Command Line Interface 24
Linker Options. 24
4 Using the Palm OS Librarian 29
Using the palib Command Line Tool 29
Creating a New Archive Library 29
Adding an ELF Object File to a Library 30
Deleting an ELF Object File from a Library. 30
Replacing an ELF Object Filein a Library 30
Extracting an ELF Object Files from a Library 31
Displaying the Contents of a Library 31

Palm OS Protein C/C++ Compiler Tools Guide iii

palib Referenceo 0oL
Librarian Command Line Interface
Librarian Options

5 Using the Palm OS Shared Library Tool
Palm OS Shared Library Tool Concepts

Building Files for Device Targets
Building Files for Palm OS Simulator Targets.
Using pslib with Palm OS Developer Suite.
Using the pslib Command Line Tool
Specifying Command Line Options.

6 Using the Palm OS Post Linker
Palm OS Post Linker Concepts

Using pelf2bin with Palm OS Developer Suite
Using the pelf2bin Command LineTool
Specitying Command Line Options.

7 Shared Library Definition File Format Reference
Creating a Shared Library DefinitionFile
Specitying Keywords
Sample Shared Library Definition Files

8 Using elfdump
Using the elfdump Command Line Tool
elfdump Referenceo
elfdump Command Line Interface
elfdump Options

Index

iv. Palm OS Protein C/C++ Compiler Tools Guide

About This Book

This book describes the Palm OS C/C++ Protein Compiler tools:
¢ Palm OS C/C++ compiler, pacc
¢ Palm OS assembler, paasm
¢ Palm OS linker, palink
¢ Palm OS librarian, palib
* Diagnostic tool, elfdump

The audience for this book is application developers who want to
write Palm OS applications using the C or C++ programming
language for ARM-based handheld devices.

How This Book Is Organized

This book has the following organization:

¢ Chapter 1, “Understanding Palm OS Application
Development,” on page 1 provides a general overview of the
Palm OS application development process and explains how
the Palm OS C/C++ Compiler tools can be used to build
Palm OS applications.

¢ Chapter 2, “Introducing Palm OS Compiler Tools,” on page 7
provides an overview on how you can use the compiler tools
to build code resources for Palm OS applications.

¢ Chapter 3, “Using the Palm OS Compiler Chain,” on page 11
describes how to use the command line version of the C/C++
compiler to build ELF object files from C and C++ source
tiles.

* Chapter 4, “Using the Palm OS Librarian,” on page 29
describes how to build an library of ELF object files that you
can use to manage your compiled code.

e Chapter 5, “Using the Palm OS Shared Library Tool,” on
page 35 describes how to define the entry point and exports
for Palm OS applications and shared libraries.

¢ Chapter 7, “Shared Library Definition File Format
Reference,” on page 47 provides reference information on the
shared library definition (SLD) file format.

Palm OS Protein C/C++ Compiler Tools Guide

About This Book
Palm OS Developer Suite Documentation

¢ Chapter 6, “Using the Palm OS Post Linker,” on page 43

describes how to use the Palm OS post linker as part of the

build process.

¢ Chapter 8, “Using elfdump,” on page 53 describes how you
can use the elfdump tool to inspect the contents of ELF object

files.

Palm OS Developer Suite Documentation
The following tools books are part of the Palm OS Developer Suite

package:

Document

Description

Introduction to Palm OS Developer Suite

Palm OS Protein C/C++ Compiler Tools
Guide

Palm OS Protein C/C++ Compiler Language
and Library Reference

Palm OS Debugger Guide
Palm OS Resource Editor Guide

Provides an overview of all of the Palm
OS development tools:

¢ Compiler Tools
* Resource Tools
¢ Testing and Debugging Tools

Describes the tools associated with the
Palm OS Protein C/C++ Compiler.

Provides reference information about the
C and C++ languages and runtime
libraries used with the Palm OS Protein
C/C++ Compiler.

Describes how to use Palm OS Debugger.

Describes how to use Palm OS Resource
Editor to create XRD files.

vi Palm OS Protein C/C++ Compiler Tools Guide

About This Book
Additional Resources

Document Description

Palm OS Resource Tools Guide Describes how to use the Palm OS
resource tools:

GenerateXRD - migration tool

Palm OS Resource Editor - XRD
editor

PalmRC - building tool
PRCMerge - building tool
PRCCompare - comparison tool
hOverlay - localization tool

PRCSign and PRCCert - code-
signing tools

Palm OS Resource File Formats Describes the XML formats used for XML
resource definition (XRD) files. XRD files
are used to define Palm OS resources, and
are the input files for the Palm OS
resource tools.

Palm OS Cobalt Simulator Guide Describes how to use Palm OS Cobalt
Simulator.
Palm OS Virtual Phone Guide Describes how to use Virtual Phone.

Additional Resources

e Documentation

PalmSource publishes its latest versions of documents for

Palm OS developers at

http:/ /www.palmos.com/dev/support/docs/

¢ Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com /dev/training

Palm OS Protein C/C++ Compiler Tools Guide vii

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training

About This Book
Additional Resources

* Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http:/ /www.palmos.com/dev/support/kb/

viii Palm OS Protein C/C++ Compiler Tools Guide

http://www.palmos.com/dev/support/kb/

Understanding
Palm OS Application
Development

This chapter gives you an overview of the application development
process for Palm OS®, describing how to use the compiler, linker,
shared library tool, and post linker to develop applications.

NOTE: This overview is a simplification of the entire Palm OS
application development process, with an emphasis on how the
developer tools convert source files into an executable
application. For a more complete description, see Exploring Palm
OS: Programming Basics.

Building a Palm OS Application

When you write a Palm OS application, you generally need to
define three things:

¢ The program logic. Most programs for Palm OS are written
in C or C++. These source files are compiled into code
resources.

¢ The user interface controls and data. Palm OS Protein
application user interfaces are written in an XML format.
XML Resource Definition (XRD) files are compiled into
temporary resource (TRC) files.

Palm OS Protein C/C++ Compiler Tools Guide 1

Understanding Palm OS Application Development
Building a Palm OS Application

¢ Optionally define the entry points to the application.
Palm OS Protein applications can have multiple entry points,
though most will have a single entry point.

If your application has a single entry point, you can use the
PilotMain() function as described in the book Exploring
Palm OS: Programming Basics.

If your application has multiple entry points, you need to
create a Shared Library Definition (SLD) file. For an
application, your SLD file’s first entry point is
_PalmUIAppStartup; this entry point will call your
application’s PilotMain () function. Your other entry
points can have arbitrary C prototypes. For more information
on SLD files, see Chapter 7, “Shared Library Definition File
Format Reference,” on page 47.

NOTE: Entry points can only be C functions; C++ methods
cannot be used as entry points.

Figure 1.1 on page 3 provides an overview of the build process.

2 Palm OS Protein C/C++ Compiler Tools Guide

Understanding Palm OS Application Development
Building a Palm OS Application

Figure 1.1 Palm OS Application Development Overview

. Shared Library HML Resource
P"'f:':g";m Logic Definition Definitian
Burce (SLDY (RO
Compiler Shared Library Resource
Tool= Taoal Tool=
ELF tihject ELF Cibject T;ﬂ";‘;‘i‘:f;g
Filer=) File: (TRC)
%_\ ¥/]/_\]
¥
Linker
ELF Ohkject
File:
Past Linker

Code
BIN

Data
BIN

L{_\

PRCMerge

F

!

Application
(PR

T

Palm OS Protein C/C++ Compiler Tools Guide 3

Understanding Palm OS Application Development
Building a Palm OS Shared Library

As shown in Figure 1.1, these developer tools are used in the build
process:

* The compiler tools compile the C source files into ELF object
tiles. The compiler tools are described in this book.

For more information about the compiler tools, see Chapter
2, “Introducing Palm OS Compiler Tools,” on page 7.

* For applications, the shared library tool compiles the shared
library definition (SLD) file into a single ELF object file. The
shared library tool, ps1ib, is described in this book.

For more information about ps1ib, see Chapter 5, “Using
the Palm OS Shared Library Tool,” on page 35.

* The resource tools, specifically PalmRc, compile the XML
Resource Definition (XRD) file into a temporary resource
(TRC) file. For more information about the resource tools, see
Palm OS Resource Tools Guide.

¢ The linker combines ELF object files into a single ELF object
file. For more information about the linker, see “Palm OS
Linker” on page 24.

* The post linker converts the ELF object file into binary
resource files that can be merged into a Palm OS application.
The post linker, pelf2bin, is described in this book.

For more information about pelf2bin, see Chapter 6,
“Using the Palm OS Post Linker,” on page 43.

¢ One of the resource tools, PRCMerge, combines the code
resource, data resource, and temporary resource files into the
tinal Palm OS application (PRC) file. For more information
about PRCMerge, see Palm OS Resource Tools Guide.

Building a Palm OS Shared Library

The process for building a Palm OS shared library is similar to the
process for building a Palm OS application. However, for shared
libraries, the shared library definition (SLD) file defines a unique
entry point and generally defines multiple exports from the library.

When ps1ib compiles the SLD file for a library, it produces two
object files:

4 Palm OS Protein C/C++ Compiler Tools Guide

Understanding Palm OS Application Development
Building a Palm OS Shared Library

* An ELF object file containing the startup code for each library
function. This object file is linked together with the library’s
object files that you get from compiling the C or C++ source
code.

¢ An ELF object file containing the stub code for each library
function. This object file is linked with the program that calls
the library’s function.

Palm OS Protein C/C++ Compiler Tools Guide 5

Understanding Palm OS Application Development
Building a Palm OS Shared Library

6 Palm OS Protein C/C++ Compiler Tools Guide

2

Introducing Palm OS
Compiler Tools

This chapter describes the compiler tools that you can use to build
code resources for Palm OS applications:

* “Compiler Chain: pacc, paasm, palink” on page 8 describes
the basic tools in the compiler chain.

¢ “Palm OS Librarian: palib” on page 9 provides an overview
of the Palm OS librarian tool.

“Diagnostic Tool: elfdump” on page 10 introduces how you
can inspect ELF object file contents with the el fdump tool.

Palm OS Protein C/C++ Compiler Tools Guide 7

Introducing Palm OS Compiler Tools
Compiler Chain: pacc, paasm, palink

Compiler Chain: pacc, paasm, palink

As is common with command line compilers, the Palm OS Protein
C/C++ Compiler, pacc, acts as a driver. pacc invokes all of the
commands necessary to produce linked files from source code.

Figure 2.1 Compiler Chain Overview

Program Logic
C Source

——

Compiler

[al=1nied

Aszzembly Text

ELF Ohiject
File:

r——
p=

Linker
palink

ELF
Executakle
Image

* pacc compiles the source files into assembly language
source files.

8 Palm OS Protein C/C++ Compiler Tools Guide

Introducing Palm OS Compiler Tools
Palm OS Librarian: palib

* pacc calls the assembler, paasm, to produce ELF object files
from the assembly language source files.

¢ pacc calls the linker, palink, to generate the ELF executable
image from the ELF object files.

For more information about using the compiler chain, see Chapter 3,
“Using the Palm OS Compiler Chain,” on page 11.

IMPORTANT: It's important to note that paac and palink are
only used when compiling for ARM processors. When building to
run in the Palm OS Simulator, the gcc compiler is used instead,
to build the necessary x86 executable code.

Palm OS Librarian: palib

The Palm OS librarian tool, palib, lets you create and manage a
collection of ELF object files. palib creates library files that
conform to the Unix 'ar' archive file format.

Figure 2.2 Librarian Overview

ELF Ohbiject
Filer=)

Librarian
palib

AR Library

With palib, you can:

Palm OS Protein C/C++ Compiler Tools Guide 9

Introducing Palm OS Compiler Tools
Diagnostic Tool: elfdump

¢ Create a new archive library.

Add ELF object files to the library.
Delete ELF object files from the library.
Replace ELF object files in a library.

* Extract ELF object files from a library.

For more information about palib, see Chapter 4, “Using the
Palm OS Librarian,” on page 29.

Diagnostic Tool: elfdump

elfdump lets you extract the contents of an ELF object file into a
text file. With elfdump, you can:

* Disassemble executable bytecode sections.

Disassemble data sections as code.

Disassemble for a given instruction set architecture.

Show only segment and section summaries.

Show specific sections, such as code, data, debug information
or symbols.

For more information about el fdump, see Chapter 8, “Using
elfdump,” on page 53.

NOTE: This tool is included in the compiler suite because you
may find it useful, but it is an unsupported tool. It is only available
from the command line.

10 Palm OS Protein C/C++ Compiler Tools Guide

3

Using the Palm OS
Compiler Chain

The Palm OS compiler chain consists of the following tools:

¢ “Palm OS Protein C/C++ Compiler” on page 12

e “Palm OS Assembler” on page 21

¢ “Palm OS Linker” on page 24

Palm OS Protein C/C++ Compiler Tools Guide 11

Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

Palm OS Protein C/C++ Compiler

The Palm OS Protein C/C++ Compiler is a full-featured, standards-
based, optimizing C/C++ compiler.

® The Palm OS compiler supports the C++ language standard
ANSI/ISO 14882:1998(E).

¢ The Palm OS compiler supports the C language standard
ANSI/ISO/IEC 9899:1999, commonly known as “C99.”

The compiler, pacc, takes one or more C/C++ language text files as
input, and produces a corresponding number of assembly language
source files as output. Optionally, pacc assembles the assembly
language files into object code by calling Palm OS Assembler, and
links the object code files into an ARM executable file by calling
Palm OS Linker.

NOTE: The Palm OS Protein C/C++ Compiler supports both
common C/C++ keyword extensions (see “Keywords” on page 14
of the book Palm OS Protein C/C++ Compiler Language and
Library Reference) as well as several predefined macros specific
to the pacc compiler (see “Preprocessor Directives” on page 20
of the Palm OS Protein C/C++ Compiler Language and Library
Reference).

Compiler Command Line Interface
The general format of the pacc command line interface is this:
pacc [options] source file [source files]

options
Compiler options, as described in the section “Compiler
Options” on page 13.

source _file [source files]
pacc supports the following types of input files:

.c
C source program.

12

Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

.cc, .CxXx, .cp .c++, .cpp
A C++ source program. The . c++ extension is not
recognized by the Palm OS Developer Suite, even
though the compiler supports it.

An assembly source program, as input to the Palm OS
assembler.

A relocateable object file, as input to the Palm OS
linker.

.1, .a, .lib
Alibrary object file, as input to the Palm OS linker.

NOTE: These file extensions are accepted regardless of case.

Compiler Options

pacc has options which control its behavior, as is standard for all
compilers. The following compiler options are supported.

-C

The compiler stops the compilation before invoking the
linker, leaving the object (. o) files in the current directory.
Any source files are compiled and/or assembled into an
object file.

Use the compiler option -o to specify the output object file
name.

pacc retains comments in the C preprocessor output, when
used with -E or -P option.

-D string

pacc defines names as specified by string. This option
applies only to source files passed through the C
preprocessor.

Note: Whitespace is optional between -D and string.

Palm OS Protein C/C++ Compiler Tools Guide 13

Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

-exXx

_go

string
Can be of the form name=def or name.

In the first case, name is defined with value def
exactly as if a corresponding #define statement is
the first line of the program.

In the second case, name is defined with the value 1.

The -D option has a lower precedence than the -U option,
which is described below.

pacc stops after preprocessing source.

For this option, pacc preprocesses any source files, writing
the output either to stdout, or to the file specified with by
the compiler option -o, which is described below.

The preprocessor removes comment lines by default. To
retain comment lines, use the compiler option -C, which is
described above.

This option enables pacc’s exception handling support.

pacc includes symbolic debugging information in the
assembly files, and sets the default optimization level to -O1.

See also the compiler option -g0, described below.

Note: "0" is the number zero.

This compiler option is similar to the option -g, but pacc
inlines functions declared with the inline specifier.

This option usually improve run-time speed and reduces
code size, but may make it more difficult to debug inline
functions.

-I dir

This option changes the search path used to find files named
in the C #include statements.

NOTE: Whitespace is optional between -1 and dir.

14 Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

The search order for #include statements is defined as follows:

1. For filenames that are absolute pathnames, pacc uses only
the filename as specified.

2. For filenames that are not absolute pathnames and that are

enclosed in quotation marks (

s

), pacc searches relative to

the following directories, in the listed order:

a.

b.

The directory containing the source file that contains the
#include statement.

The directories listed in any -I compiler options, in the
order the options occur on the command line.

The directories where the pacc standard headers have
been installed.

3. For file names that are not absolute pathnames and that are
enclosed in angle brackets (< >), pacc searches relative to the
following directories, in the listed order:

a.

b.

The directories listed in any -I compiler options, in the
order the options occur on the command line.

The directories where the pacc standard headers have
been installed.

-Ldir

This option specifies a library path, which is passed to the
linker via the palink -1libpath option. palink uses the
directory specified by dir to look for libraries that cannot
otherwise be found.

If you specify this option without a directory, then palink
will not search the default directories.

NOTE: Do not use any whitespace between -L and dir when
you specify this option.

-logo

pacc displays the logo banner, consisting of the version and
copyright notice, on each run. This is the default setting.

To turn this feature off, use the compiler option -nologo.

Palm OS Protein C/C++ Compiler Tools Guide 15

Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

-noex
This option disables pacc’s exception handling support. This
is the default setting.

To enable exception handling support, use the compiler
option -ex.

-nologo
pacc does not display the logo banner.

-nostackwarn
Disables stack size warnings. This is the same as
-stackwarn=0.

-0 outfile
Use this option to set the name of the output file to
something other than what the default rules would have
generated.

Certain restrictions on the suffix of out file are enforced if
compilation is stopped before calling the linker, palink.
This restriction prevents accidental overwriting of the source
file, for instance.

NOTE: You must have whitespace between -o and outfile
when you specify this option.

-0
Note: “O" is the capital letter “o”.
pacc sets the optimization level to the generally useful level
of global optimization. This option is an abbreviation for the
compiler option -03.

-0On

Note: “O" is the capital letter “o”.

pacc sets the optimization to the value specified by n, where
n is a number between zero (0) and five (5).

0 (zero)
No significant optimization; the compiler may
perform very basic optimizations but generally does
not.

Local (basic-block scope) optimization of blocks, only.

16

Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

2
The same as option -01, plus intraprocedural global
optimization, scheduling, and variables may reside in
registers.

3
The same as option -02, plus more extensive global
optimizations.

4
The same as -03, plus interprocedural global
optimization and inlining.

5

The same as -04, plus more extensive inlining and
global optimizations.

Interprocedural optimization only applies to multiple C files
compiled to object files within a single invocation of pacc.

You should be careful when handling object (. o) files
produced by the options -04 and -05. In these modes, when
multiple files are passed to the compiler, interprocedural
optimization occurs across files, so the resultant object files
are dependent on each other for correct execution. If you
make a change in one of these source files, you must
recompile all of the related files.

The default level of optimization is -01.

NOTE: You must not have any whitespace between -0 and n
when you specify this option.

-P

pacc preprocesses all C/C++ source files, with the
preprocessing result for each file written to a file name that
has the file extension . i substituted for the file name suffix of
the source file.

The preprocessor removes comment lines by default. To
retain comment lines, use the compiler option -C, which is
described above.

--preinclude=filename

Each --preinclude argument supplies a filename that will
be implicitly included in each compiled source file, as if there

Palm OS Protein C/C++ Compiler Tools Guide 17

Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

were a corresponding #include directive at the beginning
of the source file. There must not be a space between
--preinclude= and the filename.

pacc stops after producing assembly from C/C++ source.
Any source files are compiled as far as an assembly language
(.s) file. Use -o to specify the output assembly language
filename. pacc stops the compilation before invoking the
assembler and leaves all of the assembly source files
produced by the compilation in the current directory.

-stackwarn

Sets the stack warning size to 8,192 bytes. This is the same as
-stackwarn=8192.

-stackwarn=n

Sets the stack warning size to n bytes, where n is an integer. If
any function allocates more stack than this value, a warning
will be emitted describing how much stack the function
would use. If nis 0, stack warning is disabled. The default
value is 8,192, which results in a warning for functions using
more than 8K of stack space.

-strict

pacc is more strict about ANSI rules when compiling C/C++
source code, and emits error messages for behavior that is
unsupported by the ANSI standard.

Use the compiler option -Wstrict if you want pacc to treat
these errors as warnings.

-U name

pacc undefines the name specified by name. This option
applies only to source files passed through the C/C++
preprocessor.

The -U option overrides a -D option for the same name
regardless of the order of the options on the command line.
Any initial definition of name is removed.

NOTE: Whitespace is optional between -U and name.

-V

pacc writes the its version numbers to stderr, and exits
without performing any further actions.

18

Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

-v
pacc uses verbose output, showing all commands used for
compilation, assembly, and linking.

-vv
pacc uses verbose output, showing all commands used for
compilation, assembly, and linking, but does not execute the
commands.

-w

Use -w to suppress all warning messages from compiler and
preprocessor. This option suppresses warnings from
preprocessors, but not from the assembler or linker.

-wall
Use -wall to enable all warning messages from compiler
and preprocessor. This is the default setting.

-wen
This option makes the message number, specified by n, into
an error message.

NOTE: You must not have whitespace between -we and n
when you specify this option.

-wdn
This option suppresses the warning or error number
specified by n, if the message is suppressible. (Some errors
are not suppressible.)

NOTE: You must not have whitespace between -wd and n
when you specify this option.

-won
This option prevents the remark, warning, or suppressible
error number, specified by n, from being emitted more than
once, within a single source file.

NOTE: You must not have whitespace between -wo and n
when you specify this option.

-Wn
This option suppresses messages, based on the value of n:

Palm OS Protein C/C++ Compiler Tools Guide 19

Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

0
Suppresses all remarks, warnings, and suppressible
errors

2
Suppresses only remarks

4

Suppresses nothing. All remarks, warnings, and errors
are reported.

The default is 2. The option -W0 is the same as the option -w.
(The option -W1 is treated the same as the option -W2, and
the option -W3 is treated as the option -W4.)

-Werror
pacc treats all compiler warnings as errors, so they prevent
the compilation from succeeding. This option does not affect
errors from the Palm OS assembler or Palm OS linker.

-Wstrict
pacc is less strict about compiling C/C++ source code with
the ANSI rules, and issues warnings for behavior
unsupported by the standard.

For example, the ANSI standard requires a semicolon to
delineate items in a struct definition. In the code example
below, the missing semicolon after uint32_t itemisan
error when the -strict option is used.

typedef struct {
uint32_t item

} MyType;

However, with the -Wstrict option specified, this coding
error is treated as a warning.

20 Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Compiler Chain
Palm OS Assembler

Palm OS Assembler

The Palm OS assembler, paasm, processes the assembly language
text files produced by pacc, and produces binary object files
conforming to the ARM-ELF standard (SWS ESPC 0003 B-01).

paasm recognizes and assembles the entire ARM 4T instruction set
with the following exceptions:

e THUMB instructions

Palm OS Protein C/C++ Compiler is not a Thumb compiler,
but Thumb is specified as part of the 4T architecture.

¢ MRS/MSR

There is no support for the instructions that read and write
the status register.

e LDRT/STRT

These are only useful for privileged exception handlers.
e LDM(2), LDM(3) and STM(2)

These are unpredictable in User or System modes.

As a developer, you do not generally use this program directly.
Rather, pacc compiles source files and calls paasm for you.

NOTE: This assembler is intended for assembling output of

Palm OS Protein C/C++ Compiler, pacc. This is not a general
purpose assembler; it does not support assembling manually-
created assembly language programs.

However, in certain debugging situations, you may be interested in
inspecting the assembly files before they are converted into ARM-
ELF binary object files.

Differences Between the Palm OS Assembler
and the ARM Assembler

There are several differences between the Palm OS assembler and
that provided by ARM in its development suite:

¢ The Palm OS assembler requires that all opcodes be in lower
case.

Palm OS Protein C/C++ Compiler Tools Guide 21

Using the Palm OS Compiler Chain

Palm OS Assembler

* Opcodes do not need to be indented.
¢ Labels must be terminated with a colon.

* Labels are only available for use with directives and cannot
be used for references in opcode parameters.

* The directives are completely different.

* An ARM assembly file must begin and end with area and
end directives; the Palm OS assembler rejects those
directives.

* “&” to indicate a hexadecimal literal is not supported by
paasm. Neither is “2_" to indicate a binary literal, nor “n_
indicate other bases.

4

to

* Branches to <label> + <number> are not supported by
paasm.

e References of the form “mov r2, #label”, where “label”
is a label, are not supported.

* Some opcode/register combination instructions are accepted
by the ARM assembler (with unpredictable results) but are
rejected by the Palm OS assembler.

NOTE: The Palm OS Assembler is not intended for use other
than by the C/C++ Compiler. PaimSource™ does not recommend
using it to directly write assembly language code.

Assembler Command Line Interface

The general format of the Palm OS assembler command line
interface is this:

paasm [options] asmfile.s

options
Assembler options, as described in the section “Assembler
Options” on page 22.

Assembler Options

-0 outputFileName
Specifies the output ARM-ELF file name.

22 Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Compiler Chain
Palm OS Assembler

paasm writes the its version numbers to stderr, and
exits without performing any further actions.

Palm OS Protein C/C++ Compiler Tools Guide 23

Using the Palm OS Compiler Chain

Palm OS Linker

Palm OS Linker

The Palm OS linker combines linkable ARM-ELF object files into a
single ARM executable file. As a developer, you do not generally use
this program directly. Rather, the pacc calls palink for you.

However, in certain situations, you may want to run the linker
independent from the compiler. For example, you may be interested
in changing linker options for debugging reasons without wanting
to recompile source into object files.

Linker Command Line Interface

The general format of the Palm OS linker command line interface is
this:

palink [options] inputFiles
options

Linker options, as described in the section “Linker Options”
on page 24.

inputFiles
Space-separated list of object files or libraries. Input files are
put into output in the order given.

Linker Options

-help
palink prints a summary of help.

-d | -debug
palink includes debug information (debug input sections
and the symbol and string tables) in the output file.

This is the default setting. To turn off this option, use the
option -nodebug.

-entry location

palink uses the given numeric value or a symbol specified
by Iocation as the unique entry point of the output file.

-errors file
Use this option to tell palink to redirect error output to the
specified £ile instead of using stderr.

24 Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Compiler Chain
Palm OS Linker

-first sectionid
Use this option to tell palink that the section specified by
sectionidis to be placed first in the output file.

-info topics
palink displays information on specific items, defined by
topics:

sizes
palink gives a list and the totals of the code and data
sizes (for read-only data, read-write data, zero-
initialized data, and debug data) for each input object
and library member in the ELF object file. Using this
option is equivalent to using this option:
-info sizes,totals.

totals
palink gives the totals of the code and data sizes (for
read-only data, read-write data, zero-initialized data,
and debug data) for input objects and libraries.

unused
palink lists all unused sections that were eliminated
when the output file was created.

These topics can be specified alone or can be used together,
separated by commas but with no spaces:
-info sizes,totals,unused

-libpath pathlist
This option instructs palink where to search for library files
when an unqualified library file does not exist in the current
working directory.

pathlist
Specifies a list of directories. pathlist must contain
at least one directory. pathlist is a comma-
delimited list of directories. (The delimiter can only be
a single comma with no intervening whitespace.)

You can specify this option multiple times; the
resulting pathlist is the set of all directories you
have specified.

Linker input files that are specified with path
qualifiers are only searched in the resulting

Palm OS Protein C/C++ Compiler Tools Guide 25

Using the Palm OS Compiler Chain
Palm OS Linker

directories. Linker input files with no path
qualification are first searched for in the current
working directory then in each of the directories in the
resulting pathlist, in sequential order.

-list file
Use this option to tell palink to redirect standard output to
the specified file.

-locals
palink adds local symbols to the output symbol table.

This is the default setting. To turn off this option, use the
option -nolocals.

-mangled
palink uses object file values for the C++ symbols in error
messages and in the text output created by the —-info, -map,
-symbols, and -xref options. The symbol table itself is not
altered.

This option overrides the default option —unmangled.

-map
palink outputs an object file map.

-nodebug

palink does not include debug information in the output
tile.

This option overrides the default option -debug.

-nolocals
palink does not add local symbols to the output symbol
table.

This option overrides the default option -locals.

-0 filename | -output filename
palink sets the name of the output file to the name specified
by filename.

The default output filename from palinkis elf.o.

-symbols
palink outputs symbols that are used in the link step.

—-unmangled
palink uses source code equivalents for the C++ symbols in
error messages and in the text output created by the -info,

26 Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Compiler Chain
Palm OS Linker

-map, -symbols, and -xref options. The symbol table
itself is not altered.

This option is the default. To turn off this option, use the
option -mangled.

palink writes the its version numbers to stderr, and exits
without performing any further actions.

-via file
Use this option to tell palink to read more options from the
specified file.

-xref

Use this option to tell palink to create an intersectional
cross-reference table.

Palm OS Protein C/C++ Compiler Tools Guide 27

Using the Palm OS Compiler Chain
Palm OS Linker

28 Palm OS Protein C/C++ Compiler Tools Guide

4

Using the Palm OS
Librarian

The Palm OS librarian, palib, is a tool that you use to create and
manage a collection of ELF object files. palib creates library files
that conform to the Unix 'ar' archive file format.

¢ “Using the palib Command Line Tool” on page 29
¢ “palib Reference” on page 32

Using the palib Command Line Tool
With palib, you can do all of the following tasks:

* Creating a New Archive Library

¢ Adding an ELF Object File to a Library
Deleting an ELF Object File from a Library
Replacing an ELF Object File in a Library

Extracting an ELF Obiject Files from a Library

Displaying the Contents of a Library

Creating a New Archive Library
To create an archive library, you specify the option -create:
palib -create myLib.l

This command creates an empty library file with the name
myLib.1.

As an alternative, you can create a library using the option -add:
palib -add myLib.l TestMain.o

This command creates myLib. 1 if it doesn’t exist, and then adds
TestMain.otomyLib. 1.

Palm OS Protein C/C++ Compiler Tools Guide 29

Using the Palm OS Librarian
Using the palib Command Line Tool

Adding an ELF Object File to a Library

To add an ELF object file to an archive library, you specify the option
-add:

palib -add myLib.l TestsCode.o

This command adds TestsCode.o to myLib. 1 if it already exists,
or creates myLib.1 and adds TestsCode. o if the library file
doesn’t already exist.

NOTE: If the ELF object file is already a member of the library,
then palib displays an error message and the file is not added to
the library.

You can specify multiple ELF object files in one add request.

Deleting an ELF Object File from a Library

To remove an ELF object file from an archive library, you specify the
option -delete:

palib -delete myLib.l TestsCode.o
This command deletes TestsCode.o from myLib.1.

You can specify multiple ELF object files in one delete request.

Replacing an ELF Object File in a Library

To replace an ELF object file in an archive library, you specify the
option -replace:

palib -replace myLib.l TestsPlug.o
If the ELF object file TestsPlug.o is in the library myLib. 1, this
command replaces the TestsPlug.o file. If TestsPlug.o is not

already in the library file, the command simply adds TestsPlug.o
tomyLib.1.

You can specify multiple ELF object files in one replace request.

30 Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Librarian
Using the palib Command Line Tool

Extracting an ELF Object Files from a Library

To extract an ELF object file from an archive library, you specify the
option -extract:

palib -extract myLib.l TestsCode.o

If the ELF object file TestsCode. o is in the library myLib. 1, this
command extracts the TestsCode. o file to the local directory.

You can specify multiple ELF object files in one extract request.

WARNING! If the local directory already has a file by the same
name as the one you are extracting, palib overwrites the existing
file with the one extracted from the library file.

Displaying the Contents of a Library

To display a list of object files in a library, you specity the option
-toc:

palib -toc TestLib.L

The output shows the list of object files in the order that you added
them to the library.

Listing 4.1 Sample output from the option -toc

TestsLib Startup.o
TestsPlug.o
TestsRendering.o
TestsCode.o
Tests.o
TestsLibMain.o

To display a list of symbols in the library, you specify the option
—-symtab:

palib -symtab TestLib.L

The output shows the list of symbols in the order in which they
appear in the ELF object files.

Palm OS Protein C/C++ Compiler Tools Guide 31

Using the Palm OS Librarian

palib Reference
Listing 4.2 Sample output from the option -symtab

__user_libspace from TestsLib_Startup.o at offset 1474
SubSTestSetFormId from TestsLib_Startup.o at offset 1474
SubSTestSetFormPtr from TestsLib_Startup.o at offset 1474
$Sub$$TestSetGadgets from TestsLib_ Startup.o at offset 1474
RenderDefineRoundRect from TestsRendering.o at offset 27e9%e
RenderRawBitmapLabel from TestsRendering.o at offset 27e9e
RenderGetTextHeight from TestsRendering.o at offset 27e9e
PrvTestGadgetTabsBodyCallBack from TestsCode.o at offset 45172
PrvTestUpdateScrollFlag from TestsCode.o at offset 45172
TestSetFlags from Tests.o at offset 651e6
TestGetTextColors from Tests.o at offset 651e6
TestSetEnableUpdate from Tests.o at offset 651e6
TestGetTabGraphics from Tests.o at offset 651e6
TestsLibMain from TestsLibMain.o at offset 8c5la

To display a list of entry points defined in the library, you specify
the option -entries:

palib -entries TestLib.L

The output shows the list of entries in the order in which they
appear in the ELF object files.

Listing 4.3 Sample output from the option -entries

ENTRY at offset 0 in section startup_code header area of TestsLib_ Startup.o
ENTRY at offset 0 in section startup_code header area of SampleLib_Startup.o

palib Reference

This section provides reference information for the palib tool.

e [ibrarian Command Line Interface

¢ Librarian Options

Librarian Command Line Interface
The general format of the palib command line interface is this:

palib [options] libraryName [elfFileList]

32 Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Librarian

palib Reference
options
palib options, as described in the section “Librarian
Options.”
libraryName

The name of the library (.L) file. If the library file exists, then
palib will use the library specified; if the library file does not
exist, then palib will create the file.

elfFileList
A list of ELF object files.

Librarian Options

-add | -a
palib adds the ELF object files specified by el fFileList
to the library.

-create | -c
palib creates a new library, overwriting any existing library
with the same name.

-delete | -d
palib deletes the files specified by elfFileList from the
library.

-entries | -e
palib displays a list of entry points defined in a library.

-extract | -x
palib extracts the files specified by el1fFileList from the
library.

~help | -h

palib prints a summary of help.

-replace | -r
palib replaces the files specified by el1fFileList ina
library. If a file does not already exist, it will simply be added.

-symtab | -s
palib displays a table of all symbols and where they reside
in the library.

-toc | -t
palib displays the table of contents of the library.

Palm OS Protein C/C++ Compiler Tools Guide 33

Using the Palm OS Librarian
palib Reference

palib writes the its version numbers to stderr, and exits
without performing any further actions.

-via filename
palib reads the file £ilename for more options.

34 Palm OS Protein C/C++ Compiler Tools Guide

S

Using the Palm OS
Shared Library Tool

This chapter describes how you can use ps1ib, the Palm OS shared
library tool, to define the entry point and exports for Palm OS
applications and shared libraries.

¢ “Palm OS Shared Library Tool Concepts” on page 36
* “Using pslib with Palm OS Developer Suite” on page 38

¢ “Using the pslib Command Line Tool” on page 38

Palm OS Protein C/C++ Compiler Tools Guide 35

Using the Palm OS Shared Library Tool
Palm OS Shared Library Tool Concepts

Palm OS Shared Library Tool Concepts

The Palm OS shared library tool ps1ib is essential for building
Palm OS applications and shared libraries. Chapter 1,
“Understanding Palm OS Application Development,” on page 1
provides an overview of the entire process for building Palm OS
applications and shared libraries, and describes how ps1ib fits in
the overall process.

This is the process for using ps1ib:

1. First, create a shared library definition (SLD) file. (See
Chapter 7, “Shared Library Definition File Format
Reference,” on page 47 for information on creating SLD files.)

2. Then use pslib to convert your SLD file into object files
targeted for execution either on Palm OS devices or on Palm
OS Simulator.

For more information about Palm OS device targets, see the
section “Building Files for Device Targets” on page 37.

For more information about Palm OS Simulator targets, see
the section “Building Files for Palm OS Simulator Targets”
on page 37.

3. Link the startup object file created by ps1ib with your
compiled code object files to produce your application or
shared library.

4. Link the stub object file created by ps1ib with an application
that calls a function exported by your shared library.

36 Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Shared Library Tool
Palm OS Shared Library Tool Concepts

Building Files for Device Targets

Figure 5.1 on page 37 shows the files that ps1ib produces for ARM-
based device targets. When you build code to run on ARM-based
devices, you need to link the Palm OS startup object file with the
code you compile with the Palm OS compiler.

Figure 5.1 pslib Overview for Device Targets

SLD File

\/(ﬂ

PSLib

L ¥ b

Startup Stub
Cibject File Cibject File

Exports
Header File

(o) ()] (H

Building Files for Palm OS Simulator Targets

Figure 5.2 on page 38 shows the files that ps1ib produces for Palm
OS Simulator targets. When you build code to run on Palm OS
Simulator, you need to link the startup object file with the code you
compile with the gcc compiler for x86.

Palm OS Protein C/C++ Compiler Tools Guide 37

Using the Palm OS Shared Library Tool
Using pslib with Palm OS Developer Suite

Figure 5.2 pslib Overview for Palm OS Simulator Targets

LD File

¥/l/\

PSLib

L k2 L

Startup Stub
Chject File Chject File

Exports
Header File

(OB (OBJ) (H)

L3 h

DEFSIM.DEF ARD0000 BiK

Using pslib with Palm OS Developer Suite

pslib is fully integrated with Palm OS Developer Suite. When you
build your application or shared library with Palm OS Developer
Suite, ps1ib is called as part of the build process. You do not need
to invoke ps1ib directly.

Using the pslib Command Line Tool

pslibis used to compile a shared library definition file (SLD) into
binary resource files that can be linked into a Palm OS shared
library or Palm OS application.

38 Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Shared Library Tool
Using the pslib Command Line Tool

The command line syntax for ps1ib is:
pslib -inDef filename [options]

-inDef [none | filename]
The -inDef parameter is required, with either a filename or
the value none.

none
When the value none is specified, no shared library
definition file is required. All information is taken
from the remaining command line options.

filename
The filename of the input shared library definition file.
The input SLD file must conform to the format
described in Chapter 7, “Shared Library Definition
File Format Reference,” on page 47.

options
Additional command line options as described in the
following section “Specifying Command Line Options.”

Specifying Command Line Options

-ARMarch [4T | 5T | 5TE | 0]
This parameter specifies the minimum required ARM
architecture to load this library. (This parameter does not
apply to targets built for Palm OS Simulator.)

If you specify this optional parameter, it overrides the
ARMARCH keyword in the SLD file.

pslib issues a warning message when this command line
option and the SLD file value are different.

-creator four character code
four character code specifies a 4-byte resource type.

If you specify this optional parameter, it overrides the creator
specification in the SLD file. ps1ib issues a warning
message when this command line option and the SLD file
value are different.

Palm OS Protein C/C++ Compiler Tools Guide 39

Using the Palm OS Shared Library Tool
Using the pslib Command Line Tool

-entry entryName
entryName specifies the name of the primary entry point.

If you specify this optional parameter, it overrides the ENTRY
keyword in the SLD file. ps1ib issues a warning message
when this command line option and the SLD file value are
different.

—-execName executableName
executableName overrides the name of the SLD file as the
default base of the executable filename (the filename used for
locating DLL with Palm OS Simulator.)

This parameter is optional unless the —-inDef parameter
specified none.

~help | -h
pslib displays help information and ignores any other
options.

-OSversion versionnumber
versionnumber specifies the minimum required version of
Palm OS to load this library. If you don’t specify this option,
Palm OS Cobalt 6.0 is assumed.

The version number is in the format major.minor.fix, then the
stage (“d”, “a”, “b”, or “r”), and the build number. For
example: “6.0.1b34”, “3”, or “6.1r”.

If you specify this optional parameter, it overrides the
OSVERSION keyword in the SLD file.

pslib issues a warning message when this command line
option and the SLD file value are different.

—-outEntryNums filename
filename specifies the output C/C++ header file with
enumerations (enum) and defines (#define) for each
module entry point.

-outErrors filename
filename specifies the name of a file to which you want
pslib to write error messages.

-outObjStartup filename
filename specifies the output startup object filename for a
Palm OS device target build.

40 Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Shared Library Tool
Using the pslib Command Line Tool

-outObjStubs filename

filename specifies the output stubs object filename for a
Palm OS device target build.

-outSimDefs filename
filename specifies the output linker definition filename for
a Palm OS Cobalt Simulator target build.

-outSimgcc filename
filename specifies the gcc-compatible output object file.
When you use this option, the startup, stub and linker
definition files generated are also generated as gcc-
compatible files.

-outSimRsrc filename

filename specifies the output acod resource file for a
Palm OS Cobalt Simulator target build.

-outSimStartup filename

filename specifies the output startup object filename for a
Palm OS Cobalt Simulator target build.

-outSimStubs filename
filename specifies the output stubs object filename for a
Palm OS Cobalt Simulator target build.

-patchable [0 | 1]
If you specify this optional parameter, it overrides the
PATCHABLE keyword in the SLD file.

0
By default, an exported function is unpatchable.

By default, an exported function is patchable.

pslib issues a warning message when this command line
option and the SLD file value are different.

-revision integer
integer specifies a revision number.

If you specify this optional parameter, it overrides the
REVISION keyword in the SLD file. ps1ib issues a warning
message when this command line option and the SLD file
value are different.

Palm OS Protein C/C++ Compiler Tools Guide 41

Using the Palm OS Shared Library Tool
Using the pslib Command Line Tool

-rsrcID integer
integer specifies a resource ID.

If you specify this optional parameter, it overrides the
RESOURCEID keyword in the SLD file. ps1ib issues a
warning message when this command line option and the
SLD file value are different.

-type four character code
four character code specifies a 4-byte resource type.

If you specify this optional parameter, it overrides the type
specification in the input SLD file. ps1ib issues a warning
message when this command line option and the SLD file
value are different.

pslib displays the version information and exits.

NOTE: At least one output file (device target or Palm OS Cobalt
Simulator target) must be specified or ps1ib issues an error
message.

42 Palm OS Protein C/C++ Compiler Tools Guide

6

Using the Palm OS
Post Linker

This chapter describes how you use pelf2bin, the Palm OS post
linker, as part of the process of creating Palm OS applications.

¢ “Palm OS Post Linker Concepts” on page 44

* “Using pelf2bin with Palm OS Developer Suite” on page 45

¢ “Using the pelf2bin Command Line Tool” on page 45

Palm OS Protein C/C++ Compiler Tools Guide 43

Using the Palm OS Post Linker
Palm OS Post Linker Concepts

Palm OS Post Linker Concepts

When you use an ARM-based compiler to compile your application
source files, you create files in a standard ELF format. pelf2bin
converts these ELF object files into binary resource files that can be
merged into a Palm OS application.

pelf2bin extracts the code, data, and dynamic relocation sections
from the input file, and produces two resource files:

¢ a file containing the compiled and linked code of the
application

¢ a file containing the application's data and dynamic
relocations, which is used by the Palm OS loader to prepare
the application for execution

These files can be used with the resource tool PRCMerge to create a
Palm OS application. For more information about PRCMerge, see
the book Palm OS Resource Tools Guide.

Figure 6.1 Post Linker Overview

ARM-ELF BIN

pelfZbin

L J ¥

Code Resource
BIM

[rata Resource BIM

44 Palm OS Protein C/C++ Compiler Tools Guide

Using the Palm OS Post Linker
Using the pelf2bin Command Line Tool

Using pelf2bin with Palm OS Developer Suite

pelf2bin is fully integrated with Palm OS Developer Suite. When
you build your application or shared library with Palm OS
Developer Suite, pelf2bin is called as part of the build process.
You do not need to invoke pelf2bin directly.

Using the pelf2bin Command Line Tool

pelf2bin is used to convert an ELF object file into binary resource
files that can be merged into a Palm OS application. The command
line syntax for pelf2bin is:

pelf2bin [options] input file

options
Additional command line options as described in the
following section “Specifying Command Line Options.”

input file
Specifies the input ELF object file.

Specifying Command Line Options
—-code filename

Specifies the code resource output filename.

filename
The default filename is acod0000 .bin.

-data filename
Specifies the data resource output filename.

filename
The default filename is adat0000.bin.

-help
pelf2bin displays help information and ignores any other
option.

-directory dirname
Specifies the output directory.

-rsrcID value
Specifies the resource ID.

Palm OS Protein C/C++ Compiler Tools Guide 45

Using the Palm OS Post Linker
Using the pelf2bin Command Line Tool

value
The default resource ID value is 0.

-verbose level
Specifies what level of diagnostic information you want
pelf2bin to display.

level
An integer between 0 and 2.

pelf2bin displays version information.

46 Palm OS Protein C/C++ Compiler Tools Guide

Shared Library
Definition File
Format Reference

This chapter provides reference information on the shared library
definition (SLD) file format.

* “Creating a Shared Library Definition File” on page 48
describes the basic requirements for creating an SLD file.

* “Specifying Keywords” on page 48 describes the format of
the keywords that you use in a SLD file.

¢ “Sample Shared Library Definition Files” on page 50
provides listings of sample SLD files.

Palm OS Protein C/C++ Compiler Tools Guide 47

Shared Library Definition File Format Reference
Creating a Shared Library Definition File

Creating a Shared Library Definition File

Specifying

Shared library definition (SLD) files are text files. You can use any
text editor to create an SLD file. In the SDK samples, shared library
tiles commonly have the filename extension .s1d, but this
extension is not required.

The file is arranged as a set of keyword/value pairs, separated with
white space (with the exception of the EXPORT keyword as
described below).

To add comments to an SLD file, use a semi-colon (;) character. If a
line starts with a semi-colon, the entire line is treated as a comment.
For any line that contains a semi-colon, ps1ib will ignore all of the
characters that appear after the semi-colon character.

Keywords

Note that keywords are not case sensitive but the values specified
are case sensitive.

TYPE four character code
Defines the type of the library.

CREATOR four character code
Defines the creator of the library.

REVISION integer
Specifies the revision number of the library
integer
A user-defined version non-negative number.

RESOURCEID integer
Specifies the resource ID of this library.

integer
A non-negative number. For PRC files that have more
than one library, this value makes the libraries unique.

ENTRY name
Specifies the name of the entry point for this module. The
ENTRY keyword is not required if your application’s only
entry point is the function PilotMain().

48 Palm OS Protein C/C++ Compiler Tools Guide

Shared Library Definition File Format Reference
Specifying Keywords

PATCHABLE [0 | 1]
Defines the default patchability state for exported functions
in the module.

0
By default, the library is unpatchable.

By default, the library is patchable.

OSVERSION version
Defines the minimum Palm OS version necessary to load this
library. Use zero (0) if there is no minimum Palm OS version
required.

ARMARCH [4T | 5T | 5TE | 0]
Defines the minimum ARM architecture necessary to load
this library. Use zero (0) if there is no minimum ARM
architecture required.

This value has meaning only for Palm OS device targets; it is
not applicable for Palm OS Simulator targets.

EXPORTS export identifier
Each line in the SLD file after the EXPORTS keyword defines
a function name being exported. export identieris one
of the following:

None
Indicates that there are no functions being exported.

name [entry id] [patch indicator]
Specifies a list of the names of the exported functions.
An entry ID and patchability indicator may be
associated with each function (separated by
whitespace on the same line as the function name).

entry id

If entry idis specified, each function must have a
unique entry ID. The function list must be sorted by
entry point number, from 0 to n.

If you skip numbers in the list of entry points, the
skipped entry points are treated as not implemented
(or reserved) functions. For these reserved functions,
pslib creates dummy functions. If such a function is

Palm OS Protein C/C++ Compiler Tools Guide 49

Shared Library Definition File Format Reference
Sample Shared Library Definition Files

called from a Palm OS application, Palm OS calls the
SysUnimplemented () function.

patch indicator

The patchability indicator has two values: patchable
and unpatchable. If there is no patchability
indicator, the default is defined by the PATCHABLE
keyword or by pslib’s -patchable command-line
option.

Sample Shared Library Definition Files

The section shows two sample SLD files:
* For a sample Palm OS application SLD file, see Listing 7.1.
* For a sample Palm OS shared library SLD file, see Listing 7.2.

Listing 7.1 Sample SLD File for an Application

7
; DateBook Library Definition File

.
I

TYPE appl
CREATOR dats
REVISION 1
RESOURCEID 0

ENTRY _PalmUIAppStartup

Listing 7.2 Sample SLD File for a Shared Library

7
; MathLib Library Definition File

.
14

TYPE slib
CREATOR math
REVISION 1
RESOURCEID 0

; Shared Libraries have one entry
ENTRY MathLibMain

50 Palm OS Protein C/C++ Compiler Tools Guide

Shared Library Definition File Format Reference
Sample Shared Library Definition Files

; Shared Library Exports List

EXPORTS
fabs
ceil
floor
rint
fmod
remainder
frexp
ldexp
modf
scalbn
exp
expml
ilogb
log
logl0
loglp
logb
cbrt
hypot
pow
sgrt
cos
sin
tan
cosh
sinh
tanh
acos
asin
atan
atan2
acosh
asinh
atanh
erf
erfc
lgamma
gamma
isnan
finite
copysign
nextafter
jo
jl

Palm OS Protein C/C++ Compiler Tools Guide 51

Shared Library Definition File Format Reference
Sample Shared Library Definition Files

jn
matherr

52 Palm OS Protein C/C++ Compiler Tools Guide

8
Using elfdump

elfdump is a diagnostic tool that gives you information about the
contents of an ELF object file.

NOTE: This tool is included in the compiler suite because you
may find it useful, but it is an unsupported tool.

Using the elfdump Command Line Tool

elfdump reads the input ELF object files that you specify and
generates a report of information about the ELF object files.

By default, elfdump output includes a header for each file and
information for all sections in each file. But the command line
options allow you to change the content and format of the output
information.

Listing 8.1 Sample elfdump output

ELF FILE NAME:
FILE CLASS:
DATA ENCODING:
FILE TYPE:
ENTRY POINT:
TARGET:

EABI VERSION:
ATTRIBUTES:

SECTION INFORMATION

samplelib_ startup.o
32-bit objects

little endian
relocatable

undefined

ARM/Thumb Architecture

size props alignment name
00000040 00000008 a + w 0004 runtime_helper_data_area
00000048 00000004 a + w 0004 palm$$_slib_boxl 0_0

Palm OS Protein C/C++ Compiler Tools Guide 53

Using elfdump
elfdump Reference

/ Section 1 \

/

| name: runtime helper data area

| type: 0x1 (progbits)

| flags: 0x00000003 (allocated + writable)

| address: 0x00000000

| offset: 0x00000040

| size: 0x8

| link: 0x0

| info: 0x0

| alignment: 4

00000000 00 00 00 00 00 00 00O OO e e e e e e e
__/ Section 2 \

/

| name: palm$$_slib_boxl 0_0

| type: 0x1 (progbits)

| flags: 0x00000003 (allocated + writable)

| address: 0x00000000

| offset: 0x00000048

| size: 0x4

| link: 0x0

| info: 0x0

| alignment: 4

00000000 00 00 00 00

elfdump Reference

This section provides reference information for the elfdump tool.

¢ elfdump Command Line Interface

¢ elfdump Options

elfdump Command Line Interface
The general format of the el fdump command line interface is this:
elfdump [options] input files

options
elfdump options, as described in the section “elfdump
Options” on page 55.

input files
Alist of ELF object files.

54

Palm OS Protein C/C++ Compiler Tools Guide

Using elfdump
elfdump Reference

elfdump Options

-help
elfdump prints a summary of help.

-0 outputfile
Sets the name of the output file to the name specified by
outputfile.

If you do not specify an output filename, el £dump sends the
output information to stdout (usually dumping the
information to the screen).

elfdump writes the its version numbers to stderr, and exits
without performing any further actions.

-v level
Sets the el fdump verbosity level:

0
elfdump displays errors only. This is the default
verbosity level.

elfdump displays warnings and errors.

elfdump displays all messages.

-nodis
elfdump does not disassemble executable bytecode sections,
instead showing them as hex data dumps.

-nodwarfdis
elfdump does not decode debug data.

-sortsyms
elfdump sorts the output symbol table by value.

-disdata

elfdump disassembles data sections as code including
labels.

-allsyms
elfdump shows all (possibly superfluous) symbols in the
disassembly.

Palm OS Protein C/C++ Compiler Tools Guide 55

Using elfdump
elfdump Reference

-arch vers
elfdump disassemble for the given instruction set
architecture.

vers
An instruction set architecture value.

Valid values: v3, v3M, v4, v4xM, v4T, v4TxM, v5,
v5xM, v5T, v5TxM, v5TexP, v5TE

The default value is v5TE.

-summary
elfdump includes only segment and section summaries.

56 Palm OS Protein C/C++ Compiler Tools Guide

Index

Symbols description 53
- 55 options 55

overview 10
A reference 54
enabling exception handling 14

adding file to library 30 enforcing strict ANSI rules 18
adding local symbols to output 26 entry point 2, 24, 40
ARM architecture support 39 error message output 26
assembler options 22 error messages 20

exception handing, disabling 16
B exception handling, enabling 14
building a Palm OS application 1 executable name 40

extracting file from library 31

F

C

C language standard 12

C++ language standard 12 file map 26

C++ symbols 26

changing search order 14 H

compiler hiding logo banner 16
options 13
overview 8 |

see also pacc 8
compiler chain 8
compiler search order 14
compiler tools 8
compiling without linking 13
creator ID for shared library 39 K

D

debug information 24

including symbolic debugging information 14
inline functions 14
inlining functions 14

knowledge base viii

L

defining names 13 librarian
developer tools vi overview 9
diagnostic tool see also palib 9
overview 10 library path 15
see also elfdump 10 library search path 25
disabling exception handling 16 linker help information 24
displaying library symbol table 33 linker information 25
displaying logo banner 15 linker options in a file 27
DLL name 40 linker symbols 26
documentation vii listing files in library 31
local symbol output 26
E logo banner 15
elfdump

Palm OS Protein C/C++ Compiler Tools Guide 57

N

-nostackwarn 16

o)

omitting debug information 26

omitting local symbols 26
optimization level 16
ordering output sections 25
output file 22

output file map 26

output file name 16

output filename 26

output linker symbols 26

P

paasm
description 21
options 22
-0 22
-V 23

pacc 11

command line interface 12

description 12

options 13
-C 13
-c 13
-D 13
-E 14
-ex 14
-g 14
-g0 14
-1 14
-L 15
-logo 15
-noex 16
-nologo 16
-O 16
-0 16
-P 17
-5 18
-strict 18
-U 18
-V 18
-v 19
-vv 19

-w 19
-Werror 20
-Wstrict 20
overview 8
palib
adding file 30
description 29
displaying file list 31
displaying symbols 33
extracting file 31
options 33
-add 30
-delete 30
-extract 31
-replace 30
-symtab 33
-toc 31
-V 34
-via 34
overview 9
reference 32
removing file 30
replacing file 30
palink
description 24
options 24
-d 24
-entry 24
-errors 24
-first 25
-help 24
-info 25
-libpath 25
-list 26
-locals 26
-mangled 26
-map 26
-nodebug 26
-nolocals 26
-0 26
-symbols 26
-unmangled 26
-V 27
-via 27
-xref 27
palink debug information 24
Palm OS assembler 21

58 Palm OS Protein C/C++ Compiler Tools Guide

see also paasm 21 sld file 2

Palm OS compiler source equivalents 26

see Palm OS Protein C/C++ Compiler 11 specifying ARM architecture 39
Palm OS Developer Suite vi specifying creator ID 39
Palm OS librarian 29 specifying entry point 24, 40

see also palib 9 specifying executable name 40
Palm OS linker 24 specifying linker options 27

see also palink 24 specifying output filename 26
Palm OS Protein C/C++ Compiler 11,12 _stackwarn 18
pelf2bir} strict ANSI rules 18, 20

options suppressing warning messages 19

. -V 46 symbolic debugging information 14

--preinclude= 17
preprocessing source 14 T

preprocessing source files 17

producing assembly files 18 tools documentation vi

Introduction to Palm OS Tools vi

pslib 3§ Language and Library Reference vi
OPUOX;M h 39 Palm OS Debugger vi
:creat :rrc39 Palm OS Resource'z'Editor vi
entry 40 R(?source Tools Yn
o Name 40 Virtual Phone vii
Vo training vii

R U

undefining names 18

using a file for options 34
using file for linker options 27

redirecting error messages 24
redirecting output messages 26
removing file from library 30
replacing file in library 30
retaining comments 13 v

verbose output 19
S verbose output with no execution 19

search order 14 version information 23, 27

setting library search path 25 version string 18, 34, 46
shared library definition 2

shared library tool w
overview 36 warning messages 19

Palm OS Protein C/C++ Compiler Tools Guide 59

60 Palm OS Protein C/C++ Compiler Tools Guide

	Palm OS® Protein C/C++ Compiler Tools Guide
	�Table of Contents
	About This Book
	How This Book Is Organized
	Palm OS Developer Suite Documentation
	Additional Resources

	Understanding Palm�OS Application Development
	Building a Palm OS Application
	Building a Palm OS Shared Library

	Introducing Palm�OS Compiler Tools
	Compiler Chain: pacc, paasm, palink
	Palm OS Librarian: palib
	Diagnostic Tool: elfdump

	Using the Palm�OS Compiler Chain
	Palm OS Protein C/C++ Compiler
	Compiler Command Line Interface
	Compiler Options

	Palm OS Assembler
	Differences Between the Palm OS Assembler and the ARM Assembler
	Assembler Command Line Interface
	Assembler Options

	Palm OS Linker
	Linker Command Line Interface
	Linker Options

	Using the Palm�OS Librarian
	Using the palib Command Line Tool
	Creating a New Archive Library
	Adding an ELF Object File to a Library
	Deleting an ELF Object File from a Library
	Replacing an ELF Object File in a Library
	Extracting an ELF Object Files from a Library
	Displaying the Contents of a Library

	palib Reference
	Librarian Command Line Interface
	Librarian Options

	Using the Palm OS Shared Library Tool
	Palm OS Shared Library Tool Concepts
	Building Files for Device Targets
	Building Files for Palm OS Simulator Targets

	Using pslib with Palm OS Developer Suite
	Using the pslib Command Line Tool
	Specifying Command Line Options

	Using the Palm OS Post Linker
	Palm OS Post Linker Concepts
	Using pelf2bin with Palm OS Developer Suite
	Using the pelf2bin Command Line Tool
	Specifying Command Line Options

	Shared Library Definition File Format Reference
	Creating a Shared Library Definition File
	Specifying Keywords
	Sample Shared Library Definition Files

	Using elfdump
	Using the elfdump Command Line Tool
	elfdump Reference
	elfdump Command Line Interface
	elfdump Options

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	N
	O
	P
	R
	S
	T
	U
	V
	W

