
 

Palm OS

 

®

 

 Protein C/C++ 
Compiler Tools Guide 

 

Palm OS

 

®

 

 Developer Suite 



 

Written by Eric Shepherd and Brian Maas
Technical assistance from Kevin MacDonell, Kenneth Albanowski, Flash Sheridan, Jeff Westerinen

 

Copyright © 2003-2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains 
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”) 
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license 
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the 
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the 
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this 
technical documentation for archival and backup purposes. All copies of this technical documentation remain the 
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the 
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this 
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and you 
may not modify this technical documentation or make any derivative work of it (such as a translation, localization, 
transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to 
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS 
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT 
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL 
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION ANY 
WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY 
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, 
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO 
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS 
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC. 
ALSO EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR 
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, 
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS 
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR 
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION, 
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS 
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN 
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN 
REASONABLY FORESEEN.

PalmSource, Palm OS, and certain other trademarks and logos are trademarks or registered trademarks of 
PalmSource, Inc. or its affiliates in the United States, France, Germany, Japan, the United Kingdom, and other 
countries. These marks may not be used in connection with any product or service that does not belong to PalmSource, 
Inc. (except as expressly permitted by a license with PalmSource, Inc.), in any manner that is likely to cause confusion 
among customers, or in any manner that disparages or discredits PalmSource, Inc., its licensor, its subsidiaries, or 
affiliates. All other product and brand names may be trademarks or registered trademarks of their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER 
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS 
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

 

Palm OS Protein C/C++ Compiler Tools Guide

 

 
Document Number 3123-002
November 15, 2004
For the latest version of this document, visit 
http://www.palmos.com/dev/support/docs/. 

PalmSource, Inc.
1240 Crossman Avenue 
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com


 

Palm OS Protein C/C++ Compiler Tools Guide   

 

iii

 

 

 

Table of Contents

 

About This Book v

 

How This Book Is Organized .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . v
Palm OS Developer Suite Documentation   .   .   .   .   .   .   .   .   .   .   vi
Additional Resources  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  vii

 

1 Understanding Palm OS Application Development 1

 

Building a Palm OS Application   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 1
Building a Palm OS Shared Library  .   .   .   .   .   .   .   .   .   .   .   .   .   . 4

 

2 Introducing Palm OS Compiler Tools 7

 

Compiler Chain: pacc, paasm, palink  .   .   .   .   .   .   .   .   .   .   .   .   . 8
Palm OS Librarian: palib    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 9
Diagnostic Tool: elfdump   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   10

 

3 Using the Palm OS Compiler Chain 11

 

Palm OS Protein C/C++ Compiler   .   .   .   .   .   .   .   .   .   .   .   .   .   12
Compiler Command Line Interface .   .   .   .   .   .   .   .   .   .   .   .   12
Compiler Options   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   13

Palm OS Assembler .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   21
Differences Between the Palm OS Assembler and the ARM 

Assembler  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   21
Assembler Command Line Interface   .   .   .   .   .   .   .   .   .   .   .   22
Assembler Options .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   22

Palm OS Linker    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   24
Linker Command Line Interface  .   .   .   .   .   .   .   .   .   .   .   .   .   24
Linker Options.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   24

 

4 Using the Palm OS Librarian 29

 

Using the palib Command Line Tool    .   .   .   .   .   .   .   .   .   .   .   .   29
Creating a New Archive Library  .   .   .   .   .   .   .   .   .   .   .   .   .   29
Adding an ELF Object File to a Library   .   .   .   .   .   .   .   .   .   .   30
Deleting an ELF Object File from a Library.   .   .   .   .   .   .   .   .   30
Replacing an ELF Object File in a Library   .   .   .   .   .   .   .   .   .   30
Extracting an ELF Object Files from a Library   .   .   .   .   .   .   .   31
Displaying the Contents of a Library   .   .   .   .   .   .   .   .   .   .   .   31



 

iv

 

   Palm OS Protein C/C++ Compiler Tools Guide

 

palib Reference    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   32
Librarian Command Line Interface  .   .   .   .   .   .   .   .   .   .   .   .   32
Librarian Options   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   33

 

5 Using the Palm OS Shared Library Tool 35

 

Palm OS Shared Library Tool Concepts   .   .   .   .   .   .   .   .   .   .   .   36
Building Files for Device Targets  .   .   .   .   .   .   .   .   .   .   .   .   .   37
Building Files for Palm OS Simulator Targets.   .   .   .   .   .   .   .   37

Using pslib with Palm OS Developer Suite .   .   .   .   .   .   .   .   .   .   38
Using the pslib Command Line Tool    .   .   .   .   .   .   .   .   .   .   .   .   38

Specifying Command Line Options .   .   .   .   .   .   .   .   .   .   .   .   39

 

6 Using the Palm OS Post Linker 43

 

Palm OS Post Linker Concepts  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   44
Using pelf2bin with Palm OS Developer Suite   .   .   .   .   .   .   .   .   45
Using the pelf2bin Command Line Tool  .   .   .   .   .   .   .   .   .   .   .   45

Specifying Command Line Options .   .   .   .   .   .   .   .   .   .   .   .   45

 

7 Shared Library Definition File Format Reference 47

 

Creating a Shared Library Definition File    .   .   .   .   .   .   .   .   .   .   48
Specifying Keywords  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   48
Sample Shared Library Definition Files   .   .   .   .   .   .   .   .   .   .   .   50

 

8 Using elfdump 53

 

Using the elfdump Command Line Tool  .   .   .   .   .   .   .   .   .   .   .   53
elfdump Reference  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   54

elfdump Command Line Interface   .   .   .   .   .   .   .   .   .   .   .   .   54
elfdump Options    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   55

 

Index 57



 

Palm OS Protein C/C++ Compiler Tools Guide   

 

v

 

About This Book 

 

This book describes the Palm OS C/C++ Protein Compiler tools: 

• Palm OS C/C++ compiler, pacc 

• Palm OS assembler, paasm 

• Palm OS linker, palink 

• Palm OS librarian, palib 

• Diagnostic tool, elfdump 

The audience for this book is application developers who want to 
write Palm OS applications using the C or C++ programming 
language for ARM-based handheld devices. 

 

How This Book Is Organized 

 

This book has the following organization: 

• Chapter 1, “Understanding Palm OS Application 
Development,” on page 1 provides a general overview of the 
Palm OS application development process and explains how 
the Palm OS C/C++ Compiler tools can be used to build 
Palm OS applications. 

• Chapter 2, “Introducing Palm OS Compiler Tools,” on page 7 
provides an overview on how you can use the compiler tools 
to build code resources for Palm OS applications. 

• Chapter 3, “Using the Palm OS Compiler Chain,” on page 11 
describes how to use the command line version of the C/C++ 
compiler to build ELF object files from C and C++ source 
files. 

• Chapter 4, “Using the Palm OS Librarian,” on page 29 
describes how to build an library of ELF object files that you 
can use to manage your compiled code. 

• Chapter 5, “Using the Palm OS Shared Library Tool,” on 
page 35 describes how to define the entry point and exports 
for Palm OS applications and shared libraries. 

• Chapter 7, “Shared Library Definition File Format 
Reference,” on page 47 provides reference information on the 
shared library definition (SLD) file format. 



 

About This Book

 

Palm OS Developer Suite Documentation

 

vi

 

   Palm OS Protein C/C++ Compiler Tools Guide

 

• Chapter 6, “Using the Palm OS Post Linker,” on page 43 
describes how to use the Palm OS post linker as part of the 
build process. 

• Chapter 8, “Using elfdump,” on page 53 describes how you 
can use the elfdump tool to inspect the contents of ELF object 
files. 

 

Palm OS Developer Suite Documentation 

 

The following tools books are part of the Palm OS Developer Suite 
package: 

 

Document Description

 

Introduction to Palm OS Developer Suite 

 

Provides an overview of all of the Palm 
OS development tools: 

• Compiler Tools 

• Resource Tools

• Testing and Debugging Tools 

 

Palm OS Protein C/C++ Compiler Tools 
Guide

 

 
Describes the tools associated with the 
Palm OS Protein C/C++ Compiler. 

 

Palm OS Protein C/C++ Compiler Language 
and Library Reference

 

 
Provides reference information about the 
C and C++ languages and runtime 
libraries used with the Palm OS Protein 
C/C++ Compiler. 

 

Palm OS Debugger Guide

 

 Describes how to use Palm OS Debugger. 

 

Palm OS Resource Editor Guide

 

 Describes how to use Palm OS Resource 
Editor to create XRD files. 



 

About This Book

 

Additional Resources

 

Palm OS Protein C/C++ Compiler Tools Guide   

 

vii

 

Additional Resources

 

• Documentation 

PalmSource publishes its latest versions of documents for 
Palm OS developers at 

http://www.palmos.com/dev/support/docs/ 

• Training 

PalmSource and its partners host training classes for Palm OS 
developers. For topics and schedules, check 

http://www.palmos.com/dev/training

 

Palm OS Resource Tools Guide

 

 Describes how to use the Palm OS 
resource tools: 

• GenerateXRD - migration tool 

• Palm OS Resource Editor - XRD 
editor 

• PalmRC - building tool 

• PRCMerge - building tool 

• PRCCompare - comparison tool 

• hOverlay - localization tool 

• PRCSign and PRCCert - code-
signing tools 

 

Palm OS Resource File Formats

 

 Describes the XML formats used for XML 
resource definition (XRD) files. XRD files 
are used to define Palm OS resources, and 
are the input files for the Palm OS 
resource tools. 

 

Palm OS Cobalt Simulator Guide

 

 Describes how to use Palm OS Cobalt 
Simulator. 

 

Palm OS Virtual Phone Guide

 

 Describes how to use Virtual Phone. 

 

Document Description

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training


 

About This Book

 

Additional Resources

 

viii

 

   Palm OS Protein C/C++ Compiler Tools Guide

 

• Knowledge Base 

The Knowledge Base is a fast, web-based database of 
technical information. Search for frequently asked questions 
(FAQs), sample code, white papers, and the development 
documentation at 

http://www.palmos.com/dev/support/kb/

http://www.palmos.com/dev/support/kb/


 

Palm OS Protein C/C++ Compiler Tools Guide   

 

1

 

1

 

Understanding 
Palm OS Application 

 

Development 

 

This chapter gives you an overview of the application development 
process for Palm OS

 

®

 

, describing how to use the compiler, linker, 
shared library tool, and post linker to develop applications.

 

NOTE:

 

This overview is a simplification of the entire Palm OS 
application development process, with an emphasis on how the 
developer tools convert source files into an executable 
application. For a more complete description, see 

 

Exploring Palm 

 

OS: Programming Basics

 

. 

 

Building a Palm OS Application 

 

When you write a Palm OS application, you generally need to 
define three things: 

• The program logic. Most programs for Palm OS are written 
in C or C++. These source files are compiled into code 
resources. 

• The user interface controls and data. Palm OS Protein 
application user interfaces are written in an XML format. 
XML Resource Definition (XRD) files are compiled into 
temporary resource (TRC) files. 



 

Understanding Palm OS Application Development

 

Building a Palm OS Application

 

2

 

   Palm OS Protein C/C++ Compiler Tools Guide

 

• Optionally define the entry points to the application. 
Palm OS Protein applications can have multiple entry points, 
though most will have a single entry point. 

If your application has a single entry point, you can use the 

 

PilotMain()

 

 function as described in the book 

 

Exploring 
Palm OS: Programming Basics

 

. 

If your application has multiple entry points, you need to 
create a Shared Library Definition (SLD) file. For an 
application, your SLD file’s first entry point is 

 

_PalmUIAppStartup

 

; this entry point will call your 
application’s 

 

PilotMain()

 

 function. Your other entry 
points can have arbitrary C prototypes. For more information 
on SLD files, see Chapter 7, “Shared Library Definition File 
Format Reference,” on page 47.

 

NOTE:

 

Entry points can only be C functions; C++ methods 

 

cannot be used as entry points.

 

Figure 1.1 on page 3 provides an overview of the build process. 



 

Understanding Palm OS Application Development

 

Building a Palm OS Application

 

Palm OS Protein C/C++ Compiler Tools Guide   

 

3

Figure 1.1 Palm OS Application Development Overview 



 

Understanding Palm OS Application Development

 

Building a Palm OS Shared Library

 

4

 

   Palm OS Protein C/C++ Compiler Tools Guide

 

As shown in Figure 1.1, these developer tools are used in the build 
process: 

• The compiler tools compile the C source files into ELF object 
files. The compiler tools are described in this book. 

For more information about the compiler tools, see Chapter 
2, “Introducing Palm OS Compiler Tools,” on page 7. 

• For applications, the shared library tool compiles the shared 
library definition (SLD) file into a single ELF object file. The 
shared library tool, 

 

pslib

 

, is described in this book. 

For more information about 

 

pslib

 

, see Chapter 5, “Using 
the Palm OS Shared Library Tool,” on page 35. 

• The resource tools, specifically 

 

PalmRc

 

, compile the XML 
Resource Definition (XRD) file into a temporary resource 
(TRC) file. For more information about the resource tools, see 

 

Palm OS Resource Tools Guide

 

. 

• The linker combines ELF object files into a single ELF object 
file. For more information about the linker, see “Palm OS 
Linker” on page 24. 

• The post linker converts the ELF object file into binary 
resource files that can be merged into a Palm OS application. 
The post linker, 

 

pelf2bin

 

, is described in this book. 

For more information about 

 

pelf2bin

 

, see Chapter 6, 
“Using the Palm OS Post Linker,” on page 43. 

• One of the resource tools, 

 

PRCMerge

 

, combines the code 
resource, data resource, and temporary resource files into the 
final Palm OS application (PRC) file. For more information 
about 

 

PRCMerge

 

, see 

 

Palm OS Resource Tools Guide. 

 

Building a Palm OS Shared Library 

 

The process for building a Palm OS shared library is similar to the 
process for building a Palm OS application. However, for shared 
libraries, the shared library definition (SLD) file defines a unique 
entry point and generally defines multiple exports from the library. 

When 

 

pslib compiles the SLD file for a library, it produces two 
object files: 



Understanding Palm OS Application Development
Building a Palm OS Shared Library

Palm OS Protein C/C++ Compiler Tools Guide   5

• An ELF object file containing the startup code for each library 
function. This object file is linked together with the library’s 
object files that you get from compiling the C or C++ source 
code. 

• An ELF object file containing the stub code for each library 
function. This object file is linked with the program that calls 
the library’s function. 



Understanding Palm OS Application Development
Building a Palm OS Shared Library

6   Palm OS Protein C/C++ Compiler Tools Guide



Palm OS Protein C/C++ Compiler Tools Guide   7

2
Introducing Palm OS 
Compiler Tools 
This chapter describes the compiler tools that you can use to build 
code resources for Palm OS applications: 

• “Compiler Chain: pacc, paasm, palink” on page 8 describes 
the basic tools in the compiler chain. 

• “Palm OS Librarian: palib” on page 9 provides an overview 
of the Palm OS librarian tool. 

• “Diagnostic Tool: elfdump” on page 10 introduces how you 
can inspect ELF object file contents with the elfdump tool. 



Introducing Palm OS Compiler Tools
Compiler Chain: pacc, paasm, palink

8   Palm OS Protein C/C++ Compiler Tools Guide

Compiler Chain: pacc, paasm, palink 
As is common with command line compilers, the Palm OS Protein 
C/C++ Compiler, pacc, acts as a driver. pacc invokes all of the 
commands necessary to produce linked files from source code. 

Figure 2.1 Compiler Chain Overview 

• pacc compiles the source files into assembly language 
source files. 



Introducing Palm OS Compiler Tools
Palm OS Librarian: palib

Palm OS Protein C/C++ Compiler Tools Guide   9

• pacc calls the assembler, paasm, to produce ELF object files 
from the assembly language source files. 

• pacc calls the linker, palink, to generate the ELF executable 
image from the ELF object files. 

For more information about using the compiler chain, see Chapter 3, 
“Using the Palm OS Compiler Chain,” on page 11.

IMPORTANT: It’s important to note that paac and palink are 
only used when compiling for ARM processors. When building to 
run in the Palm OS Simulator, the gcc compiler is used instead, 
to build the necessary x86 executable code.

Palm OS Librarian: palib 
The Palm OS librarian tool, palib, lets you create and manage a 
collection of ELF object files. palib creates library files that 
conform to the Unix 'ar' archive file format. 

Figure 2.2 Librarian Overview 

With palib, you can: 



Introducing Palm OS Compiler Tools
Diagnostic Tool: elfdump

10   Palm OS Protein C/C++ Compiler Tools Guide

• Create a new archive library. 

• Add ELF object files to the library. 

• Delete ELF object files from the library. 

• Replace ELF object files in a library. 

• Extract ELF object files from a library. 

For more information about palib, see Chapter 4, “Using the 
Palm OS Librarian,” on page 29. 

Diagnostic Tool: elfdump 
elfdump lets you extract the contents of an ELF object file into a 
text file. With elfdump, you can: 

• Disassemble executable bytecode sections. 

• Disassemble data sections as code. 

• Disassemble for a given instruction set architecture. 

• Show only segment and section summaries. 

• Show specific sections, such as code, data, debug information 
or symbols. 

For more information about elfdump, see Chapter 8, “Using 
elfdump,” on page 53. 

NOTE: This tool is included in the compiler suite because you 
may find it useful, but it is an unsupported tool. It is only available 
from the command line.



Palm OS Protein C/C++ Compiler Tools Guide   11

3
Using the Palm OS 
Compiler Chain 
The Palm OS compiler chain consists of the following tools: 

• “Palm OS Protein C/C++ Compiler” on page 12 

• “Palm OS Assembler” on page 21 

• “Palm OS Linker” on page 24 



Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

12   Palm OS Protein C/C++ Compiler Tools Guide

Palm OS Protein C/C++ Compiler 
The Palm OS Protein C/C++ Compiler is a full-featured, standards-
based, optimizing C/C++ compiler. 

• The Palm OS compiler supports the C++ language standard 
ANSI/ISO 14882:1998(E). 

• The Palm OS compiler supports the C language standard 
ANSI/ISO/IEC 9899:1999, commonly known as “C99.” 

The compiler, pacc, takes one or more C/C++ language text files as 
input, and produces a corresponding number of assembly language 
source files as output. Optionally, pacc assembles the assembly 
language files into object code by calling Palm OS Assembler, and 
links the object code files into an ARM executable file by calling 
Palm OS Linker. 

NOTE: The Palm OS Protein C/C++ Compiler supports both 
common C/C++ keyword extensions (see “Keywords” on page 14 
of the book Palm OS Protein C/C++ Compiler Language and 
Library Reference) as well as several predefined macros specific 
to the pacc compiler (see “Preprocessor Directives” on page 20 
of the Palm OS Protein C/C++ Compiler Language and Library 
Reference).

Compiler Command Line Interface 
The general format of the pacc command line interface is this: 

pacc [options] source_file [source_files] 

options 
Compiler options, as described in the section “Compiler 
Options” on page 13. 

source_file [source_files] 
pacc supports the following types of input files: 

.c 
C source program. 



Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

Palm OS Protein C/C++ Compiler Tools Guide   13

.cc, .cxx, .cp .c++, .cpp
A C++ source program. The .c++ extension is not 
recognized by the Palm OS Developer Suite, even 
though the compiler supports it.

.s 
An assembly source program, as input to the Palm OS 
assembler. 

.o 
A relocateable object file, as input to the Palm OS 
linker. 

.l, .a, .lib 
A library object file, as input to the Palm OS linker. 

NOTE: These file extensions are accepted regardless of case.

Compiler Options 
pacc has options which control its behavior, as is standard for all 
compilers. The following compiler options are supported. 

-c
The compiler stops the compilation before invoking the 
linker, leaving the object (.o) files in the current directory. 
Any source files are compiled and/or assembled into an 
object file. 

Use the compiler option -o to specify the output object file 
name. 

-C
pacc retains comments in the C preprocessor output, when 
used with -E or -P option. 

-D string 
pacc defines names as specified by string. This option 
applies only to source files passed through the C 
preprocessor. 

Note: Whitespace is optional between -D and string. 



Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

14   Palm OS Protein C/C++ Compiler Tools Guide

string 
Can be of the form name=def or name. 

In the first case, name is defined with value def 
exactly as if a corresponding #define statement is 
the first line of the program. 

In the second case, name is defined with the value 1. 

The -D option has a lower precedence than the -U option, 
which is described below.

-E 
pacc stops after preprocessing source. 

For this option, pacc preprocesses any source files, writing 
the output either to stdout, or to the file specified with by 
the compiler option -o, which is described below. 

The preprocessor removes comment lines by default. To 
retain comment lines, use the compiler option -C, which is 
described above. 

-ex
This option enables pacc’s exception handling support. 

-g
pacc includes symbolic debugging information in the 
assembly files, and sets the default optimization level to -O1.

See also the compiler option -g0, described below.

-g0
Note: "0" is the number zero. 

This compiler option is similar to the option -g, but pacc 
inlines functions declared with the inline specifier. 

This option usually improve run-time speed and reduces 
code size, but may make it more difficult to debug inline 
functions. 

-I dir 
This option changes the search path used to find files named 
in the C #include statements. 

NOTE: Whitespace is optional between -I and dir. 



Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

Palm OS Protein C/C++ Compiler Tools Guide   15

The search order for #include statements is defined as follows: 

1. For filenames that are absolute pathnames, pacc uses only 
the filename as specified. 

2. For filenames that are not absolute pathnames and that are 
enclosed in quotation marks (“ “), pacc searches relative to 
the following directories, in the listed order: 

a. The directory containing the source file that contains the 
#include statement. 

b. The directories listed in any -I compiler options, in the 
order the options occur on the command line. 

c. The directories where the pacc standard headers have 
been installed. 

3. For file names that are not absolute pathnames and that are 
enclosed in angle brackets (< >), pacc searches relative to the 
following directories, in the listed order: 

a. The directories listed in any -I compiler options, in the 
order the options occur on the command line. 

b. The directories where the pacc standard headers have 
been installed. 

-Ldir 
This option specifies a library path, which is passed to the 
linker via the palink -libpath option. palink uses the 
directory specified by dir to look for libraries that cannot 
otherwise be found. 

If you specify this option without a directory, then palink 
will not search the default directories. 

NOTE: Do not use any whitespace between -L and dir when 
you specify this option. 

-logo 
pacc displays the logo banner, consisting of the version and 
copyright notice, on each run. This is the default setting. 

To turn this feature off, use the compiler option -nologo. 



Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

16   Palm OS Protein C/C++ Compiler Tools Guide

-noex
This option disables pacc’s exception handling support. This 
is the default setting. 

To enable exception handling support, use the compiler 
option -ex. 

-nologo 
pacc does not display the logo banner. 

-nostackwarn
Disables stack size warnings. This is the same as
-stackwarn=0.

-o outfile
Use this option to set the name of the output file to 
something other than what the default rules would have 
generated. 

Certain restrictions on the suffix of outfile are enforced if 
compilation is stopped before calling the linker, palink. 
This restriction prevents accidental overwriting of the source 
file, for instance. 

NOTE: You must have whitespace between -o and outfile 
when you specify this option. 

-O 
Note: “O” is the capital letter “o”. 

pacc sets the optimization level to the generally useful level 
of global optimization. This option is an abbreviation for the 
compiler option -O3.

-On
Note: “O” is the capital letter “o”. 

pacc sets the optimization to the value specified by n, where 
n is a number between zero (0) and five (5). 

0 (zero) 
No significant optimization; the compiler may 
perform very basic optimizations but generally does 
not.

1 
Local (basic-block scope) optimization of blocks, only.



Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

Palm OS Protein C/C++ Compiler Tools Guide   17

2 
The same as option -O1, plus intraprocedural global 
optimization, scheduling, and variables may reside in 
registers.

3 
The same as option -O2, plus more extensive global 
optimizations.

4 
The same as -O3, plus interprocedural global 
optimization and inlining.

5 
The same as -O4, plus more extensive inlining and 
global optimizations.

Interprocedural optimization only applies to multiple C files 
compiled to object files within a single invocation of pacc.

You should be careful when handling object (.o) files 
produced by the options -O4 and -O5. In these modes, when 
multiple files are passed to the compiler, interprocedural 
optimization occurs across files, so the resultant object files 
are dependent on each other for correct execution. If you 
make a change in one of these source files, you must 
recompile all of the related files. 

The default level of optimization is -O1. 

NOTE: You must not have any whitespace between -O and n 
when you specify this option. 

-P
pacc preprocesses all C/C++ source files, with the 
preprocessing result for each file written to a file name that 
has the file extension .i substituted for the file name suffix of 
the source file. 

The preprocessor removes comment lines by default. To 
retain comment lines, use the compiler option -C, which is 
described above. 

--preinclude=filename
Each --preinclude argument supplies a filename that will 
be implicitly included in each compiled source file, as if there 



Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

18   Palm OS Protein C/C++ Compiler Tools Guide

were a corresponding #include directive at the beginning 
of the source file. There must not be a space between
--preinclude= and the filename.

-S
pacc stops after producing assembly from C/C++ source. 
Any source files are compiled as far as an assembly language 
(.s) file. Use -o to specify the output assembly language 
filename. pacc stops the compilation before invoking the 
assembler and leaves all of the assembly source files 
produced by the compilation in the current directory. 

-stackwarn
Sets the stack warning size to 8,192 bytes. This is the same as 
-stackwarn=8192.

-stackwarn=n
Sets the stack warning size to n bytes, where n is an integer. If 
any function allocates more stack than this value, a warning 
will be emitted describing how much stack the function 
would use. If n is 0, stack warning is disabled. The default 
value is 8,192, which results in a warning for functions using 
more than 8K of stack space.

-strict 
pacc is more strict about ANSI rules when compiling C/C++ 
source code, and emits error messages for behavior that is 
unsupported by the ANSI standard. 

Use the compiler option -Wstrict if you want pacc to treat 
these errors as warnings. 

-U name
pacc undefines the name specified by name. This option 
applies only to source files passed through the C/C++ 
preprocessor. 

The -U option overrides a -D option for the same name 
regardless of the order of the options on the command line. 
Any initial definition of name is removed. 

NOTE: Whitespace is optional between -U and name. 

-V 
pacc writes the its version numbers to stderr, and exits 
without performing any further actions. 



Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

Palm OS Protein C/C++ Compiler Tools Guide   19

-v 
pacc uses verbose output, showing all commands used for 
compilation, assembly, and linking. 

-vv 
pacc uses verbose output, showing all commands used for 
compilation, assembly, and linking, but does not execute the 
commands.

-w
Use -w to suppress all warning messages from compiler and 
preprocessor. This option suppresses warnings from 
preprocessors, but not from the assembler or linker. 

-wall
Use -wall to enable all warning messages from compiler 
and preprocessor. This is the default setting. 

-wen
This option makes the message number, specified by n, into 
an error message. 

NOTE: You must not have whitespace between -we and n 
when you specify this option. 

-wdn
This option suppresses the warning or error number 
specified by n, if the message is suppressible. (Some errors 
are not suppressible.) 

NOTE: You must not have whitespace between -wd and n 
when you specify this option. 

-won 
This option prevents the remark, warning, or suppressible 
error number, specified by n, from being emitted more than 
once, within a single source file. 

NOTE: You must not have whitespace between -wo and n 
when you specify this option. 

-Wn
This option suppresses messages, based on the value of n: 



Using the Palm OS Compiler Chain
Palm OS Protein C/C++ Compiler

20   Palm OS Protein C/C++ Compiler Tools Guide

0
Suppresses all remarks, warnings, and suppressible 
errors

2
Suppresses only remarks

4
Suppresses nothing. All remarks, warnings, and errors 
are reported. 

The default is 2. The option -W0 is the same as the option -w. 
(The option -W1 is treated the same as the option -W2, and 
the option -W3 is treated as the option -W4.)

-Werror
pacc treats all compiler warnings as errors, so they prevent 
the compilation from succeeding. This option does not affect 
errors from the Palm OS assembler or Palm OS linker. 

-Wstrict
pacc is less strict about compiling C/C++ source code with 
the ANSI rules, and issues warnings for behavior 
unsupported by the standard. 

For example, the ANSI standard requires a semicolon to 
delineate items in a struct definition. In the code example 
below, the missing semicolon after uint32_t item is an 
error when the -strict option is used. 

typedef struct {
uint32_t item

} MyType;

However, with the -Wstrict option specified, this coding 
error is treated as a warning. 



Using the Palm OS Compiler Chain
Palm OS Assembler

Palm OS Protein C/C++ Compiler Tools Guide   21

Palm OS Assembler 
The Palm OS assembler, paasm, processes the assembly language 
text files produced by pacc, and produces binary object files 
conforming to the ARM-ELF standard (SWS ESPC 0003 B-01). 

paasm recognizes and assembles the entire ARM 4T instruction set 
with the following exceptions: 

• THUMB instructions

Palm OS Protein C/C++ Compiler is not a Thumb compiler, 
but Thumb is specified as part of the 4T architecture. 

• MRS/MSR 

There is no support for the instructions that read and write 
the status register.

• LDRT/STRT 

These are only useful for privileged exception handlers.

• LDM(2), LDM(3) and STM(2) 

These are unpredictable in User or System modes.

As a developer, you do not generally use this program directly. 
Rather, pacc compiles source files and calls paasm for you. 

NOTE: This assembler is intended for assembling output of 
Palm OS Protein C/C++ Compiler, pacc. This is not a general 
purpose assembler; it does not support assembling manually-
created assembly language programs. 

However, in certain debugging situations, you may be interested in 
inspecting the assembly files before they are converted into ARM-
ELF binary object files. 

Differences Between the Palm OS Assembler 
and the ARM Assembler
There are several differences between the Palm OS assembler and 
that provided by ARM in its development suite:

• The Palm OS assembler requires that all opcodes be in lower 
case.



Using the Palm OS Compiler Chain
Palm OS Assembler

22   Palm OS Protein C/C++ Compiler Tools Guide

• Opcodes do not need to be indented.

• Labels must be terminated with a colon.

• Labels are only available for use with directives and cannot 
be used for references in opcode parameters.

• The directives are completely different.

• An ARM assembly file must begin and end with area and 
end directives; the Palm OS assembler rejects those 
directives.

• “&” to indicate a hexadecimal literal is not supported by 
paasm. Neither is “2_” to indicate a binary literal, nor “n_” to 
indicate other bases.

• Branches to <label> + <number> are not supported by 
paasm.

• References of the form “mov r2, #label”, where “label” 
is a label, are not supported.

• Some opcode/register combination instructions are accepted 
by the ARM assembler (with unpredictable results) but are 
rejected by the Palm OS assembler.

NOTE: The Palm OS Assembler is not intended for use other 
than by the C/C++ Compiler. PalmSource™ does not recommend 
using it to directly write assembly language code.

Assembler Command Line Interface 
The general format of the Palm OS assembler command line 
interface is this: 

paasm [options] asmfile.s 

options 
Assembler options, as described in the section “Assembler 
Options” on page 22. 

Assembler Options 
-o outputFileName 

Specifies the output ARM-ELF file name. 



Using the Palm OS Compiler Chain
Palm OS Assembler

Palm OS Protein C/C++ Compiler Tools Guide   23

-V 
paasm writes the its version numbers to stderr, and 
exits without performing any further actions. 



Using the Palm OS Compiler Chain
Palm OS Linker

24   Palm OS Protein C/C++ Compiler Tools Guide

Palm OS Linker 
The Palm OS linker combines linkable ARM-ELF object files into a 
single ARM executable file. As a developer, you do not generally use 
this program directly. Rather, the pacc calls palink for you. 

However, in certain situations, you may want to run the linker 
independent from the compiler. For example, you may be interested 
in changing linker options for debugging reasons without wanting 
to recompile source into object files. 

Linker Command Line Interface 
The general format of the Palm OS linker command line interface is 
this: 

palink [options] inputFiles 

options 
Linker options, as described in the section “Linker Options” 
on page 24. 

inputFiles 
Space-separated list of object files or libraries. Input files are 
put into output in the order given. 

Linker Options 
-help

palink prints a summary of help. 

-d | -debug
palink includes debug information (debug input sections 
and the symbol and string tables) in the output file. 

This is the default setting. To turn off this option, use the 
option -nodebug. 

-entry location 
palink uses the given numeric value or a symbol specified 
by location as the unique entry point of the output file. 

-errors file
Use this option to tell palink to redirect error output to the 
specified file instead of using stderr. 



Using the Palm OS Compiler Chain
Palm OS Linker

Palm OS Protein C/C++ Compiler Tools Guide   25

-first sectionid
Use this option to tell palink that the section specified by 
sectionid is to be placed first in the output file. 

-info topics
palink displays information on specific items, defined by 
topics: 

sizes
palink gives a list and the totals of the code and data 
sizes (for read-only data, read-write data, zero-
initialized data, and debug data) for each input object 
and library member in the ELF object file. Using this 
option is equivalent to using this option: 
-info sizes,totals. 

totals
palink gives the totals of the code and data sizes (for 
read-only data, read-write data, zero-initialized data, 
and debug data) for input objects and libraries. 

unused 
palink lists all unused sections that were eliminated 
when the output file was created.

These topics can be specified alone or can be used together, 
separated by commas but with no spaces: 
-info sizes,totals,unused

-libpath pathlist
This option instructs palink where to search for library files 
when an unqualified library file does not exist in the current 
working directory. 

pathlist 
Specifies a list of directories. pathlist must contain 
at least one directory. pathlist is a comma-
delimited list of directories. (The delimiter can only be 
a single comma with no intervening whitespace.)

You can specify this option multiple times; the 
resulting pathlist is the set of all directories you 
have specified. 

Linker input files that are specified with path 
qualifiers are only searched in the resulting 



Using the Palm OS Compiler Chain
Palm OS Linker

26   Palm OS Protein C/C++ Compiler Tools Guide

directories. Linker input files with no path 
qualification are first searched for in the current 
working directory then in each of the directories in the 
resulting pathlist, in sequential order. 

-list file
Use this option to tell palink to redirect standard output to 
the specified file. 

-locals
palink adds local symbols to the output symbol table.

This is the default setting. To turn off this option, use the 
option -nolocals. 

-mangled
palink uses object file values for the C++ symbols in error 
messages and in the text output created by the -info, -map,   
-symbols, and -xref options. The symbol table itself is not 
altered. 

This option overrides the default option -unmangled. 

-map
palink outputs an object file map.

-nodebug
palink does not include debug information in the output 
file. 

This option overrides the default option -debug. 

-nolocals
palink does not add local symbols to the output symbol 
table. 

This option overrides the default option -locals. 

-o filename | -output filename
palink sets the name of the output file to the name specified 
by filename. 

The default output filename from palink is elf.o. 

-symbols
palink outputs symbols that are used in the link step.

-unmangled
palink uses source code equivalents for the C++ symbols in 
error messages and in the text output created by the -info, 



Using the Palm OS Compiler Chain
Palm OS Linker

Palm OS Protein C/C++ Compiler Tools Guide   27

-map,   -symbols, and -xref options. The symbol table 
itself is not altered. 

This option is the default. To turn off this option, use the 
option -mangled. 

-V 
palink writes the its version numbers to stderr, and exits 
without performing any further actions.

-via file 
Use this option to tell palink to read more options from the 
specified file. 

-xref
Use this option to tell palink to create an intersectional 
cross-reference table.



Using the Palm OS Compiler Chain
Palm OS Linker

28   Palm OS Protein C/C++ Compiler Tools Guide



Palm OS Protein C/C++ Compiler Tools Guide   29

4
Using the Palm OS 
Librarian 
The Palm OS librarian, palib, is a tool that you use to create and 
manage a collection of ELF object files. palib creates library files 
that conform to the Unix 'ar' archive file format. 

• “Using the palib Command Line Tool” on page 29

• “palib Reference” on page 32

Using the palib Command Line Tool 
With palib, you can do all of the following tasks: 

• Creating a New Archive Library 

• Adding an ELF Object File to a Library 

• Deleting an ELF Object File from a Library 

• Replacing an ELF Object File in a Library 

• Extracting an ELF Object Files from a Library 

• Displaying the Contents of a Library 

Creating a New Archive Library 
To create an archive library, you specify the option -create: 

palib -create myLib.l

This command creates an empty library file with the name 
myLib.l. 

As an alternative, you can create a library using the option -add: 

palib -add myLib.l TestMain.o 

This command creates myLib.l if it doesn’t exist, and then adds 
TestMain.o to myLib.l. 



Using the Palm OS Librarian
Using the palib Command Line Tool

30   Palm OS Protein C/C++ Compiler Tools Guide

Adding an ELF Object File to a Library 
To add an ELF object file to an archive library, you specify the option 
-add: 

palib -add myLib.l TestsCode.o

This command adds TestsCode.o to myLib.l if it already exists, 
or creates myLib.l and adds TestsCode.o if the library file 
doesn’t already exist. 

NOTE: If the ELF object file is already a member of the library, 
then palib displays an error message and the file is not added to 
the library. 

You can specify multiple ELF object files in one add request. 

Deleting an ELF Object File from a Library
To remove an ELF object file from an archive library, you specify the 
option -delete: 

palib -delete myLib.l TestsCode.o

This command deletes TestsCode.o from myLib.l. 

You can specify multiple ELF object files in one delete request. 

Replacing an ELF Object File in a Library 
To replace an ELF object file in an archive library, you specify the 
option -replace: 

palib -replace myLib.l TestsPlug.o

If the ELF object file TestsPlug.o is in the library myLib.l, this 
command replaces the TestsPlug.o file. If TestsPlug.o is not 
already in the library file, the command simply adds TestsPlug.o 
to myLib.l. 

You can specify multiple ELF object files in one replace request. 



Using the Palm OS Librarian
Using the palib Command Line Tool

Palm OS Protein C/C++ Compiler Tools Guide   31

Extracting an ELF Object Files from a Library
To extract an ELF object file from an archive library, you specify the 
option -extract: 

palib -extract myLib.l TestsCode.o

If the ELF object file TestsCode.o is in the library myLib.l, this 
command extracts the TestsCode.o file to the local directory. 

You can specify multiple ELF object files in one extract request. 

WARNING! If the local directory already has a file by the same 
name as the one you are extracting, palib overwrites the existing 
file with the one extracted from the library file. 

Displaying the Contents of a Library 
To display a list of object files in a library, you specify the option 
-toc: 

palib -toc TestLib.L 

The output shows the list of object files in the order that you added 
them to the library. 

Listing 4.1 Sample output from the option -toc 

TestsLib_Startup.o
TestsPlug.o
TestsRendering.o
TestsCode.o
Tests.o
TestsLibMain.o

To display a list of symbols in the library, you specify the option 
-symtab: 

palib -symtab TestLib.L 

The output shows the list of symbols in the order in which they 
appear in the ELF object files. 



Using the Palm OS Librarian
palib Reference

32   Palm OS Protein C/C++ Compiler Tools Guide

Listing 4.2 Sample output from the option -symtab 

__user_libspace                from TestsLib_Startup.o   at offset 1474
$Sub$$TestSetFormId            from TestsLib_Startup.o   at offset 1474
$Sub$$TestSetFormPtr           from TestsLib_Startup.o   at offset 1474
$Sub$$TestSetGadgets           from TestsLib_Startup.o   at offset 1474
RenderDefineRoundRect          from TestsRendering.o     at offset 27e9e
RenderRawBitmapLabel           from TestsRendering.o     at offset 27e9e
RenderGetTextHeight            from TestsRendering.o     at offset 27e9e
PrvTestGadgetTabsBodyCallBack  from TestsCode.o          at offset 45172
PrvTestUpdateScrollFlag        from TestsCode.o          at offset 45172
TestSetFlags                   from Tests.o              at offset 651e6
TestGetTextColors              from Tests.o              at offset 651e6
TestSetEnableUpdate            from Tests.o              at offset 651e6
TestGetTabGraphics             from Tests.o              at offset 651e6
TestsLibMain                   from TestsLibMain.o       at offset 8c51a

To display a list of entry points defined in the library, you specify 
the option -entries: 

palib -entries TestLib.L 

The output shows the list of entries in the order in which they 
appear in the ELF object files. 

Listing 4.3 Sample output from the option -entries 

ENTRY at offset 0 in section startup_code_header_area of TestsLib_Startup.o 
ENTRY at offset 0 in section startup_code_header_area of SampleLib_Startup.o 

palib Reference 
This section provides reference information for the palib tool. 

• Librarian Command Line Interface 

• Librarian Options 

Librarian Command Line Interface 
The general format of the palib command line interface is this: 

palib [options] libraryName [elfFileList] 



Using the Palm OS Librarian
palib Reference

Palm OS Protein C/C++ Compiler Tools Guide   33

options 
palib options, as described in the section “Librarian 
Options.” 

libraryName 
The name of the library (.L) file. If the library file exists, then 
palib will use the library specified; if the library file does not 
exist, then palib will create the file. 

elfFileList 
A list of ELF object files. 

Librarian Options 
-add | -a 

palib adds the ELF object files specified by elfFileList 
to the library.

-create | -c
palib creates a new library, overwriting any existing library 
with the same name. 

-delete | -d 
palib deletes the files specified by elfFileList from the 
library. 

-entries | -e 
palib displays a list of entry points defined in a library.

-extract | -x 
palib extracts the files specified by elfFileList from the 
library. 

-help | -h 
palib prints a summary of help. 

-replace | -r 
palib replaces the files specified by elfFileList in a 
library. If a file does not already exist, it will simply be added. 

-symtab | -s 
palib displays a table of all symbols and where they reside 
in the library. 

-toc | -t 
palib displays the table of contents of the library.



Using the Palm OS Librarian
palib Reference

34   Palm OS Protein C/C++ Compiler Tools Guide

-V 
palib writes the its version numbers to stderr, and exits 
without performing any further actions. 

-via filename
palib reads the file filename for more options. 



Palm OS Protein C/C++ Compiler Tools Guide   35

5
Using the Palm OS 
Shared Library Tool 
This chapter describes how you can use pslib, the Palm OS shared 
library tool, to define the entry point and exports for Palm OS 
applications and shared libraries. 

• “Palm OS Shared Library Tool Concepts” on page 36

• “Using pslib with Palm OS Developer Suite” on page 38

• “Using the pslib Command Line Tool” on page 38



Using the Palm OS Shared Library Tool
Palm OS Shared Library Tool Concepts

36   Palm OS Protein C/C++ Compiler Tools Guide

Palm OS Shared Library Tool Concepts 
The Palm OS shared library tool pslib is essential for building 
Palm OS applications and shared libraries. Chapter 1, 
“Understanding Palm OS Application Development,” on page 1 
provides an overview of the entire process for building Palm OS 
applications and shared libraries, and describes how pslib fits in 
the overall process. 

This is the process for using pslib: 

1. First, create a shared library definition (SLD) file. (See 
Chapter 7, “Shared Library Definition File Format 
Reference,” on page 47 for information on creating SLD files.) 

2. Then use pslib to convert your SLD file into object files 
targeted for execution either on Palm OS devices or on Palm 
OS Simulator. 

For more information about Palm OS device targets, see the 
section “Building Files for Device Targets” on page 37. 

For more information about Palm OS Simulator targets, see 
the section “Building Files for Palm OS Simulator Targets” 
on page 37. 

3. Link the startup object file created by pslib with your 
compiled code object files to produce your application or 
shared library. 

4. Link the stub object file created by pslib with an application 
that calls a function exported by your shared library. 



Using the Palm OS Shared Library Tool
Palm OS Shared Library Tool Concepts

Palm OS Protein C/C++ Compiler Tools Guide   37

Building Files for Device Targets 
Figure 5.1 on page 37 shows the files that pslib produces for ARM-
based device targets. When you build code to run on ARM-based 
devices, you need to link the Palm OS startup object file with the 
code you compile with the Palm OS compiler. 

Figure 5.1 pslib Overview for Device Targets 

Building Files for Palm OS Simulator Targets 
Figure 5.2 on page 38 shows the files that pslib produces for Palm 
OS Simulator targets. When you build code to run on Palm OS 
Simulator, you need to link the startup object file with the code you 
compile with the gcc compiler for x86. 



Using the Palm OS Shared Library Tool
Using pslib with Palm OS Developer Suite

38   Palm OS Protein C/C++ Compiler Tools Guide

Figure 5.2 pslib Overview for Palm OS Simulator Targets 

Using pslib with Palm OS Developer Suite 
pslib is fully integrated with Palm OS Developer Suite. When you 
build your application or shared library with Palm OS Developer 
Suite, pslib is called as part of the build process. You do not need 
to invoke pslib directly. 

Using the pslib Command Line Tool 
pslib is used to compile a shared library definition file (SLD) into 
binary resource files that can be linked into a Palm OS shared 
library or Palm OS application. 



Using the Palm OS Shared Library Tool
Using the pslib Command Line Tool

Palm OS Protein C/C++ Compiler Tools Guide   39

The command line syntax for pslib is: 

pslib -inDef filename [options] 

-inDef [none | filename ]
The -inDef parameter is required, with either a filename or 
the value none. 

none 
When the value none is specified, no shared library 
definition file is required. All information is taken 
from the remaining command line options. 

filename
The filename of the input shared library definition file. 
The input SLD file must conform to the format 
described in Chapter 7, “Shared Library Definition 
File Format Reference,” on page 47. 

options 
Additional command line options as described in the 
following section “Specifying Command Line Options.” 

Specifying Command Line Options 
-ARMarch [4T | 5T | 5TE | 0]

This parameter specifies the minimum required ARM 
architecture to load this library. (This parameter does not 
apply to targets built for Palm OS Simulator.) 

If you specify this optional parameter, it overrides the 
ARMARCH keyword in the SLD file. 

pslib issues a warning message when this command line 
option and the SLD file value are different. 

-creator four_character_code
four_character_code specifies a 4-byte resource type. 

If you specify this optional parameter, it overrides the creator 
specification in the SLD file. pslib issues a warning 
message when this command line option and the SLD file 
value are different. 



Using the Palm OS Shared Library Tool
Using the pslib Command Line Tool

40   Palm OS Protein C/C++ Compiler Tools Guide

-entry entryName
entryName specifies the name of the primary entry point. 

If you specify this optional parameter, it overrides the ENTRY 
keyword in the SLD file. pslib issues a warning message 
when this command line option and the SLD file value are 
different. 

-execName executableName 
executableName overrides the name of the SLD file as the 
default base of the executable filename (the filename used for 
locating DLL with Palm OS Simulator.)

This parameter is optional unless the -inDef parameter 
specified none. 

-help | -h 
pslib displays help information and ignores any other 
options. 

-OSversion versionnumber 
versionnumber specifies the minimum required version of 
Palm OS to load this library. If you don’t specify this option, 
Palm OS Cobalt 6.0 is assumed.

The version number is in the format major.minor.fix, then the 
stage (“d”, “a”, “b”, or “r”), and the build number. For 
example: “6.0.1b34”, “3”, or “6.1r”.

If you specify this optional parameter, it overrides the 
OSVERSION keyword in the SLD file. 

pslib issues a warning message when this command line 
option and the SLD file value are different. 

-outEntryNums filename
filename specifies the output C/C++ header file with 
enumerations (enum) and defines (#define) for each 
module entry point. 

-outErrors filename 
filename specifies the name of a file to which you want 
pslib to write error messages. 

-outObjStartup filename
filename specifies the output startup object filename for a 
Palm OS device target build. 



Using the Palm OS Shared Library Tool
Using the pslib Command Line Tool

Palm OS Protein C/C++ Compiler Tools Guide   41

-outObjStubs filename
filename specifies the output stubs object filename for a 
Palm OS device target build. 

-outSimDefs filename
filename specifies the output linker definition filename for 
a Palm OS Cobalt Simulator target build. 

-outSimgcc filename
filename specifies the gcc-compatible output object file. 
When you use this option, the startup, stub and linker 
definition files generated are also generated as gcc-
compatible files. 

-outSimRsrc filename
filename specifies the output acod resource file for a 
Palm OS Cobalt Simulator target build. 

-outSimStartup filename
filename specifies the output startup object filename for a 
Palm OS Cobalt Simulator target build. 

-outSimStubs filename
filename specifies the output stubs object filename for a 
Palm OS Cobalt Simulator target build. 

-patchable [0 | 1]
If you specify this optional parameter, it overrides the 
PATCHABLE keyword in the SLD file. 

0 
By default, an exported function is unpatchable. 

1
By default, an exported function is patchable. 

pslib issues a warning message when this command line 
option and the SLD file value are different. 

-revision integer 
integer specifies a revision number. 

If you specify this optional parameter, it overrides the 
REVISION keyword in the SLD file. pslib issues a warning 
message when this command line option and the SLD file 
value are different. 



Using the Palm OS Shared Library Tool
Using the pslib Command Line Tool

42   Palm OS Protein C/C++ Compiler Tools Guide

-rsrcID integer 
integer specifies a resource ID. 

If you specify this optional parameter, it overrides the 
RESOURCEID keyword in the SLD file. pslib issues a 
warning message when this command line option and the 
SLD file value are different. 

-type four_character_code 
four_character_code specifies a 4-byte resource type. 

If you specify this optional parameter, it overrides the type 
specification in the input SLD file. pslib issues a warning 
message when this command line option and the SLD file 
value are different. 

-V 
pslib displays the version information and exits.

NOTE: At least one output file (device target or Palm OS Cobalt 
Simulator target) must be specified or pslib issues an error 
message. 



Palm OS Protein C/C++ Compiler Tools Guide   43

6
Using the Palm OS 
Post Linker 
This chapter describes how you use pelf2bin, the Palm OS post 
linker, as part of the process of creating Palm OS applications. 

• “Palm OS Post Linker Concepts” on page 44

• “Using pelf2bin with Palm OS Developer Suite” on page 45

• “Using the pelf2bin Command Line Tool” on page 45



Using the Palm OS Post Linker
Palm OS Post Linker Concepts

44   Palm OS Protein C/C++ Compiler Tools Guide

Palm OS Post Linker Concepts 
When you use an ARM-based compiler to compile your application 
source files, you create files in a standard ELF format. pelf2bin 
converts these ELF object files into binary resource files that can be 
merged into a Palm OS application. 

pelf2bin extracts the code, data, and dynamic relocation sections 
from the input file, and produces two resource files: 

• a file containing the compiled and linked code of the 
application 

• a file containing the application's data and dynamic 
relocations, which is used by the Palm OS loader to prepare 
the application for execution 

These files can be used with the resource tool PRCMerge to create a 
Palm OS application. For more information about PRCMerge, see 
the book Palm OS Resource Tools Guide. 

Figure 6.1 Post Linker Overview 



Using the Palm OS Post Linker
Using the pelf2bin Command Line Tool

Palm OS Protein C/C++ Compiler Tools Guide   45

Using pelf2bin with Palm OS Developer Suite 
pelf2bin is fully integrated with Palm OS Developer Suite. When 
you build your application or shared library with Palm OS 
Developer Suite, pelf2bin is called as part of the build process. 
You do not need to invoke pelf2bin directly. 

Using the pelf2bin Command Line Tool 
pelf2bin is used to convert an ELF object file into binary resource 
files that can be merged into a Palm OS application. The command 
line syntax for pelf2bin is: 

pelf2bin [options] input_file 

options 
Additional command line options as described in the 
following section “Specifying Command Line Options.” 

input_file 
Specifies the input ELF object file. 

Specifying Command Line Options 
-code filename

Specifies the code resource output filename. 

filename 
The default filename is acod0000.bin. 

-data filename
Specifies the data resource output filename. 

filename 
The default filename is adat0000.bin. 

-help 
pelf2bin displays help information and ignores any other 
option. 

-directory dirname
Specifies the output directory. 

-rsrcID value
Specifies the resource ID. 



Using the Palm OS Post Linker
Using the pelf2bin Command Line Tool

46   Palm OS Protein C/C++ Compiler Tools Guide

value 
The default resource ID value is 0. 

-verbose level
Specifies what level of diagnostic information you want 
pelf2bin to display. 

level 
An integer between 0 and 2. 

-V 
pelf2bin displays version information. 



Palm OS Protein C/C++ Compiler Tools Guide   47

7
Shared Library 
Definition File 
Format Reference 
This chapter provides reference information on the shared library 
definition (SLD) file format. 

• “Creating a Shared Library Definition File” on page 48 
describes the basic requirements for creating an SLD file. 

• “Specifying Keywords” on page 48 describes the format of 
the keywords that you use in a SLD file. 

• “Sample Shared Library Definition Files” on page 50 
provides listings of sample SLD files. 



Shared Library Definit ion File Format Reference
Creating a Shared Library Definition File

48   Palm OS Protein C/C++ Compiler Tools Guide

Creating a Shared Library Definition File 
Shared library definition (SLD) files are text files. You can use any 
text editor to create an SLD file. In the SDK samples, shared library 
files commonly have the filename extension .sld, but this 
extension is not required. 

The file is arranged as a set of keyword/value pairs, separated with 
white space (with the exception of the EXPORT keyword as 
described below).

To add comments to an SLD file, use a semi-colon (;) character. If a 
line starts with a semi-colon, the entire line is treated as a comment. 
For any line that contains a semi-colon, pslib will ignore all of the 
characters that appear after the semi-colon character. 

Specifying Keywords 
Note that keywords are not case sensitive but the values specified 
are case sensitive. 

TYPE four_character_code
Defines the type of the library. 

CREATOR four_character_code
Defines the creator of the library. 

REVISION integer 
Specifies the revision number of the library 

integer 
A user-defined version non-negative number. 

RESOURCEID integer
Specifies the resource ID of this library. 

integer 
A non-negative number. For PRC files that have more 
than one library, this value makes the libraries unique. 

ENTRY name
Specifies the name of the entry point for this module. The 
ENTRY keyword is not required if your application’s only 
entry point is the function PilotMain(). 



Shared Library Definit ion File Format Reference
Specifying Keywords

Palm OS Protein C/C++ Compiler Tools Guide   49

PATCHABLE [0 | 1]
Defines the default patchability state for exported functions 
in the module. 

0 
By default, the library is unpatchable. 

1
By default, the library is patchable. 

OSVERSION version
Defines the minimum Palm OS version necessary to load this 
library. Use zero (0) if there is no minimum Palm OS version 
required. 

ARMARCH [4T | 5T | 5TE | 0] 
Defines the minimum ARM architecture necessary to load 
this library. Use zero (0) if there is no minimum ARM 
architecture required. 

This value has meaning only for Palm OS device targets; it is 
not applicable for Palm OS Simulator targets. 

EXPORTS export_identifier 
Each line in the SLD file after the EXPORTS keyword defines 
a function name being exported. export_identier is one 
of the following: 

None 
Indicates that there are no functions being exported. 

name [entry_id] [patch_indicator] 
Specifies a list of the names of the exported functions. 
An entry ID and patchability indicator may be 
associated with each function (separated by 
whitespace on the same line as the function name). 

entry_id 

If entry_id is specified, each function must have a 
unique entry ID. The function list must be sorted by 
entry point number, from 0 to n. 

If you skip numbers in the list of entry points, the 
skipped entry points are treated as not implemented 
(or reserved) functions. For these reserved functions, 
pslib creates dummy functions. If such a function is 



Shared Library Definit ion File Format Reference
Sample Shared Library Definition Files

50   Palm OS Protein C/C++ Compiler Tools Guide

called from a Palm OS application, Palm OS calls the 
SysUnimplemented() function. 

patch_indicator

The patchability indicator has two values: patchable 
and unpatchable. If there is no patchability 
indicator, the default is defined by the PATCHABLE 
keyword or by pslib’s -patchable command-line 
option. 

Sample Shared Library Definition Files 
The section shows two sample SLD files: 

• For a sample Palm OS application SLD file, see Listing 7.1.

• For a sample Palm OS shared library SLD file, see Listing 7.2. 

Listing 7.1 Sample SLD File for an Application 

;
; DateBook Library Definition File
;

TYPE                  appl 
CREATOR               dats 
REVISION                1 
RESOURCEID              0 

ENTRY _PalmUIAppStartup 

Listing 7.2 Sample SLD File for a Shared Library 

;
; MathLib Library Definition File
;

TYPE                  slib
CREATOR               math
REVISION                1
RESOURCEID              0

; Shared Libraries have one entry 
ENTRY MathLibMain



Shared Library Definit ion File Format Reference
Sample Shared Library Definition Files

Palm OS Protein C/C++ Compiler Tools Guide   51

; Shared Library Exports List 
EXPORTS
        fabs
        ceil
        floor
        rint
        fmod
        remainder
        frexp
        ldexp
        modf
        scalbn
        exp
        expm1
        ilogb
        log
        log10
        log1p
        logb
        cbrt
        hypot
        pow
        sqrt
        cos
        sin
        tan
        cosh
        sinh
        tanh
        acos
        asin
        atan
        atan2
        acosh
        asinh
        atanh
        erf
        erfc
        lgamma
        gamma
        isnan
        finite
        copysign
        nextafter
        j0
        j1



Shared Library Definit ion File Format Reference
Sample Shared Library Definition Files

52   Palm OS Protein C/C++ Compiler Tools Guide

        jn
        matherr



Palm OS Protein C/C++ Compiler Tools Guide   53

8
Using elfdump 
elfdump is a diagnostic tool that gives you information about the 
contents of an ELF object file. 

NOTE: This tool is included in the compiler suite because you 
may find it useful, but it is an unsupported tool. 

Using the elfdump Command Line Tool 
elfdump reads the input ELF object files that you specify and 
generates a report of information about the ELF object files. 

By default, elfdump output includes a header for each file and 
information for all sections in each file. But the command line 
options allow you to change the content and format of the output 
information. 

Listing 8.1 Sample elfdump output 

ELF FILE NAME: samplelib_startup.o
FILE CLASS:    32-bit objects
DATA ENCODING: little endian
FILE TYPE:     relocatable
ENTRY POINT:   undefined
TARGET:        ARM/Thumb Architecture
EABI VERSION:  2
ATTRIBUTES:    

SECTION INFORMATION

        section  offset    size      props    alignment  name                                       
        --------------------------------------------------------------------------------------------
        1        00000040  00000008  a + w    0004       runtime_helper_data_area                                      
        2        00000048  00000004  a + w    0004       palm$$_slib_boxl_0_0                                          
        .
        .
        .

                _________



Using elfdump
elfdump Reference

54   Palm OS Protein C/C++ Compiler Tools Guide

           ___/ Section 1 \_____________________________________________________________________________
         /
        |   name:      runtime_helper_data_area
        |   type:      0x1 (progbits)
        |   flags:     0x00000003 (allocated  + writable)
        |   address:   0x00000000
        |   offset:    0x00000040
        |   size:      0x8
        |   link:      0x0
        |   info:      0x0
        |   alignment: 4

        00000000        00 00 00 00 00 00 00 00                                  . . . . . . . .
                _________
           ___/ Section 2 \_____________________________________________________________________________
         /
        |   name:      palm$$_slib_boxl_0_0
        |   type:      0x1 (progbits)
        |   flags:     0x00000003 (allocated  + writable)
        |   address:   0x00000000
        |   offset:    0x00000048
        |   size:      0x4
        |   link:      0x0
        |   info:      0x0
        |   alignment: 4

        00000000        00 00 00 00                                              . . . .

elfdump Reference 
This section provides reference information for the elfdump tool. 

• elfdump Command Line Interface

• elfdump Options

elfdump Command Line Interface 
The general format of the elfdump command line interface is this: 

elfdump [options] input_files 

options 
elfdump options, as described in the section “elfdump 
Options” on page 55. 

input_files
A list of ELF object files. 



Using elfdump
elfdump Reference

Palm OS Protein C/C++ Compiler Tools Guide   55

elfdump Options 
-help

elfdump prints a summary of help. 

-o outputfile
Sets the name of the output file to the name specified by 
outputfile. 

If you do not specify an output filename, elfdump sends the 
output information to stdout (usually dumping the 
information to the screen). 

-V 
elfdump writes the its version numbers to stderr, and exits 
without performing any further actions. 

-v level
Sets the elfdump verbosity level: 

0 
elfdump displays errors only. This is the default 
verbosity level. 

1 
elfdump displays warnings and errors. 

2 
elfdump displays all messages. 

-nodis
elfdump does not disassemble executable bytecode sections, 
instead showing them as hex data dumps. 

-nodwarfdis
elfdump does not decode debug data. 

-sortsyms
elfdump sorts the output symbol table by value. 

-disdata
elfdump disassembles data sections as code including 
labels.

-allsyms
elfdump shows all (possibly superfluous) symbols in the 
disassembly. 



Using elfdump
elfdump Reference

56   Palm OS Protein C/C++ Compiler Tools Guide

-arch vers
elfdump disassemble for the given instruction set 
architecture. 

vers 
An instruction set architecture value. 

Valid values: v3, v3M, v4, v4xM, v4T, v4TxM, v5, 
v5xM, v5T, v5TxM, v5TexP, v5TE 

The default value is v5TE. 

-summary
elfdump includes only segment and section summaries. 



Palm OS Protein C/C++ Compiler Tools Guide   57
 

Index

Symbols
- 55

A
adding file to library 30
adding local symbols to output 26
ARM architecture support 39
assembler options 22

B
building a Palm OS application 1

C
C language standard 12
C++ language standard 12
C++ symbols 26
changing search order 14
compiler

options 13
overview 8
see also pacc 8

compiler chain 8
compiler search order 14
compiler tools 8
compiling without linking 13
creator ID for shared library 39

D
debug information 24
defining names 13
developer tools vi
diagnostic tool

overview 10
see also elfdump 10

disabling exception handling 16
displaying library symbol table 33
displaying logo banner 15
DLL name 40
documentation vii

E
elfdump

description 53
options 55
overview 10
reference 54

enabling exception handling 14
enforcing strict ANSI rules 18
entry point 2, 24, 40
error message output 26
error messages 20
exception handing, disabling 16
exception handling, enabling 14
executable name 40
extracting file from library 31

F
file map 26

H
hiding logo banner 16

I
including symbolic debugging information 14
inline functions 14
inlining functions 14

K
knowledge base viii

L
librarian

overview 9
see also palib 9

library path 15
library search path 25
linker help information 24
linker information 25
linker options in a file 27
linker symbols 26
listing files in library 31
local symbol output 26
logo banner 15



58   Palm OS Protein C/C++ Compiler Tools Guide 

N
-nostackwarn 16

O
omitting debug information 26
omitting local symbols 26
optimization level 16
ordering output sections 25
output file 22
output file map 26
output file name 16
output filename 26
output linker symbols 26

P
paasm

description 21
options 22

-o 22
-V 23

pacc 11
command line interface 12
description 12
options 13

-C 13
-c 13
-D 13
-E 14
-ex 14
-g 14
-g0 14
-I 14
-L 15
-logo 15
-noex 16
-nologo 16
-O 16
-o 16
-P 17
-S 18
-strict 18
-U 18
-V 18
-v 19
-vv 19

-w 19
-Werror 20
-Wstrict 20

overview 8
palib

adding file 30
description 29
displaying file list 31
displaying symbols 33
extracting file 31
options 33

-add 30
-delete 30
-extract 31
-replace 30
-symtab 33
-toc 31
-V 34
-via 34

overview 9
reference 32
removing file 30
replacing file 30

palink
description 24
options 24

-d 24
-entry 24
-errors 24
-first 25
-help 24
-info 25
-libpath 25
-list 26
-locals 26
-mangled 26
-map 26
-nodebug 26
-nolocals 26
-o 26
-symbols 26
-unmangled 26
-V 27
-via 27
-xref 27

palink debug information 24
Palm OS assembler 21



Palm OS Protein C/C++ Compiler Tools Guide   59
 

see also paasm 21
Palm OS compiler

see Palm OS Protein C/C++ Compiler 11
Palm OS Developer Suite vi
Palm OS librarian 29

see also palib 9
Palm OS linker 24

see also palink 24
Palm OS Protein C/C++ Compiler 11, 12
pelf2bin

options
-V 46

--preinclude= 17
preprocessing source 14
preprocessing source files 17
producing assembly files 18
pslib 36

options
-ARMarch 39
-creator 39
-entry 40
-execName 40
-V 42

R
redirecting error messages 24
redirecting output messages 26
removing file from library 30
replacing file in library 30
retaining comments 13

S
search order 14
setting library search path 25
shared library definition 2
shared library tool

overview 36

sld file 2
source equivalents 26
specifying ARM architecture 39
specifying creator ID 39
specifying entry point 24, 40
specifying executable name 40
specifying linker options 27
specifying output filename 26
-stackwarn 18
strict ANSI rules 18, 20
suppressing warning messages 19
symbolic debugging information 14

T
tools documentation vi

Introduction to Palm OS Tools vi
Language and Library Reference vi
Palm OS Debugger vi
Palm OS Resource Editor vi
Resource Tools vii
Virtual Phone vii

training vii

U
undefining names 18
using a file for options 34
using file for linker options 27

V
verbose output 19
verbose output with no execution 19
version information 23, 27
version string 18, 34, 46

W
warning messages 19



60   Palm OS Protein C/C++ Compiler Tools Guide 


	Palm OS® Protein C/C++ Compiler Tools Guide
	�Table of Contents
	About This Book
	How This Book Is Organized
	Palm OS Developer Suite Documentation
	Additional Resources

	Understanding Palm�OS Application Development
	Building a Palm OS Application
	Building a Palm OS Shared Library

	Introducing Palm�OS Compiler Tools
	Compiler Chain: pacc, paasm, palink
	Palm OS Librarian: palib
	Diagnostic Tool: elfdump

	Using the Palm�OS Compiler Chain
	Palm OS Protein C/C++ Compiler
	Compiler Command Line Interface
	Compiler Options

	Palm OS Assembler
	Differences Between the Palm OS Assembler and the ARM Assembler
	Assembler Command Line Interface
	Assembler Options

	Palm OS Linker
	Linker Command Line Interface
	Linker Options


	Using the Palm�OS Librarian
	Using the palib Command Line Tool
	Creating a New Archive Library
	Adding an ELF Object File to a Library
	Deleting an ELF Object File from a Library
	Replacing an ELF Object File in a Library
	Extracting an ELF Object Files from a Library
	Displaying the Contents of a Library

	palib Reference
	Librarian Command Line Interface
	Librarian Options


	Using the Palm OS Shared Library Tool
	Palm OS Shared Library Tool Concepts
	Building Files for Device Targets
	Building Files for Palm OS Simulator Targets

	Using pslib with Palm OS Developer Suite
	Using the pslib Command Line Tool
	Specifying Command Line Options


	Using the Palm OS Post Linker
	Palm OS Post Linker Concepts
	Using pelf2bin with Palm OS Developer Suite
	Using the pelf2bin Command Line Tool
	Specifying Command Line Options


	Shared Library Definition File Format Reference
	Creating a Shared Library Definition File
	Specifying Keywords
	Sample Shared Library Definition Files

	Using elfdump
	Using the elfdump Command Line Tool
	elfdump Reference
	elfdump Command Line Interface
	elfdump Options


	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	N
	O
	P
	R
	S
	T
	U
	V
	W


