

Palm OS

®

 Protein C/C++
Compiler Language &
Library Reference

Palm OS

®

 Developer Suite

CONTRIBUTORS

Written by Eric Shepherd.
Engineering contributions by Kenneth Albanowski, Flash Sheridan, and Chris Tate.

Copyright © 2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT
(INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, the PalmSource logo, BeOS, Graffiti, HandFAX, HandMAIL, HandPHONE, HandSTAMP, HandWEB,
HotSync, the HotSync logo, iMessenger, MultiMail, MyPalm, Palm, the Palm logo, the Palm trade dress, Palm
Computing, Palm OS, Palm Powered, PalmConnect, PalmGear, PalmGlove, PalmModem, Palm Pack, PalmPak,
PalmPix, PalmPower, PalmPrint, Palm.Net, Palm Reader, Palm Talk, Simply Palm and ThinAir are trademarks of
PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks or registered trademarks of
their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Palm OS Protein C/C++ Compiler Language & Library Reference

Document Number 3124-002
November 9, 2004
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Palm OS Protein C/C++ Compiler Language & Library Reference

iii

Table of Contents

About This Book vii

How This Book Is Organized vii
Palm OS Developer Suite Documentation viii
Additional Resources ix

Part I: C/C++ Compiler Language Reference

1 Language Overview 3

C Technical Requirements 4
C++ Technical Requirements 4
Limitations . 5

Restrictions on C99 5
Restrictions on C++. 5
Restrictions on Data Types. 6

2 Language Elements 11

Lexical Elements . 11
Character Set . 11
Comments . 12
Tokens . 13
Identifiers . 13
Keywords . 14
Constants . 16
Operators . 16
Separators . 20

Preprocessor Directives 20
#pragma . 20

Predefined Constants 21

iv

 Palm OS Protein C/C++ Compiler Language & Library Reference

Part II: C/C++ Compiler Library Reference

3 STLport/iostream 25

4 Palm OS-Specific Libraries 27

The Palm OS Implementation of the Standard C Library (libc) . 28

5 Runtime Library Functions 29

Supported Functions 29
posix/ctype.h . 29
posix/math.h . 29
posix/stdio.h . 30
posix/stdlib.h . 31
posix/string.h . 32
posix/strings.h . 32
posix/time.h. 32
posix/sys/ioctl.h. 32
posix/sys/PalmMath.h 33
posix/sys/time.h 33
posix/sys/uio.h . 33

Unsupported Functions 33
posix/ctype.h . 33
posix/inttypes.h . 33
posix/locale.h . 33
posix/math.h . 34
posix/signal.h . 34
posix/stdio.h . 34
posix/stdlib.h . 35
posix/string.h . 35
posix/strings.h . 36
posix/termios.h . 36
posix/time.h. 36
posix/wchar.h . 36
posix/machine/arm/param.h 37
posix/sys/bswap.h. 37
posix/sys/socket.h 37

Palm OS Protein C/C++ Compiler Language & Library Reference

v

posix/sys/stat.h . 37
posix/sys/time.h 37
posix/sys/uio.h . 37

6 assert.h 39

Functions and Macros 39

7 ctype.h 41

8 errno.h 43

Global Variables . 43

9 ioctl.h 45

10 iso646.h 47

11 locale.h 49

12 math.h 51

13 PalmMath.h 55

Constants . 55
Functions and Macros 57

14 stdarg.h 61

15 stddef.h 63

16 stdio.h 65

17 stdlib.h 67

Functions and Macros 68

vi

 Palm OS Protein C/C++ Compiler Language & Library Reference

18 string.h 69

19 strings.h 73

20 time.h 75

21 time.h 77

Constants . 77
Functions and Macros 77

22 uio.h 83

Structures and Types 83
Functions and Macros 83

23 wchar.h 85

Index 87

Palm OS Protein C/C++ Compiler Language & Library Reference

vii

About This Book

This book provides reference information about the C/C++
language and runtime libraries used with the Palm OS

®

 compiler
tools. The audience for this book is application developers creating
Palm OS Protein ARM-native applications and shared libraries
using either the C or C++ programming languages for ARM-based
handheld devices.

This book assumes you’re already familiar with the C and C++
programming languages. Its goal is to familiarize you with the
specific capabilities of the compiler provided as part of the Palm OS
Developer Suite.

If you’re unfamiliar with C or C++, or need a good reference for
these languages, we recommend the following books, which are the
defacto standard references for the languages:

•

The C Programming Language, 2nd Edition

by Brian W.
Kernighan, Dennis Ritchie, and Dennis M. Ritchie. ISBN 0-
13-1103628.

•

C: A Reference Manual

, Fifth Edition, by Samuel P. Harbison,
Prentice Hall, Inc., 2002, ISBN 0-13-089592.

•

The C++ Programming Language, Special 3rd Edition

 by Bjarne
Stroustrup. ISBN 0-20-1700735.

How This Book Is Organized

This book is divided into two parts, a language reference and a
library reference.

Part I, “C/C++ Compiler Language Reference,” has the following
organization:

• Chapter 1, “Language Overview,” on page 3 describes the
technical requirements, language extensions, and limitations
of the Palm OS compiler.

• Chapter 2, “Language Elements,” on page 11 describes the
Palm OS compiler’s C/C++ language differences, as
compared to the ANSI standard.

Part II, “C/C++ Compiler Library Reference,” has the following
organization:

About This Book

Palm OS Developer Suite Documentation

viii

 Palm OS Protein C/C++ Compiler Language & Library Reference

• Chapter 3, “STLport/iostream,” on page 25 describes the
STLport implementation of the C++ standard template
library.

• Chapter 4, “Palm OS-Specific Libraries,” on page 27
describes general library information.

• Chapter 5, “Runtime Library Functions,” on page 29
describes the supported and unsupported runtime functions.

• The chapters that follow, beginning with Chapter 6,
“assert.h,” on page 39 each describe a specific header file and
the supported structures, runtime functions, and macros
defined within that header file.

Palm OS Developer Suite Documentation

The following tools books are part of the Palm OS Developer Suite:

Document Description

Introduction to Palm OS Developer Suite

Provides an overview of all of the Palm
OS development tools:

• compiler tools

• resource tools

• testing and debugging tools

Palm OS Protein C/C++ Compiler Tools
Guide

Describes how to use the Palm OS
compiler tools:

• pacc – compiler

• paasm – assembler

• palink – linker

• palib – librarian

• PSLib – the Palm OS shared library
tool, including information about
shared library definition (SLD)
files

• PElf2Bin – Palm OS post linker

• ElfDump – diagnostic tool

About This Book

Additional Resources

Palm OS Protein C/C++ Compiler Language & Library Reference

ix

Additional Resources

• Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

Palm OS Resource Tools Guide

 Describes how to use the Palm OS
resource tools:

• GenerateXRD – migration tool

• Palm OS Resource Editor – XRD
editor

• PalmRC – building tool

• PRCMerge – building tool

• PRCCompare – comparison tool

• hOverlay – localization tool

• PRCSign and PRCCert – code-
signing tools

Palm OS Debugger Guide

 Describes how to use the Palm OS
Debugger.

Palm OS Resource File Formats

 Describes the XML formats used for XML
resource definition (XRD) files. XRD files
are used to define Palm OS resources and
are the input files for the Palm OS
resource tools.

Palm OS Cobalt Simulator Guide

 Describes how to use the Palm OS Cobalt
Simulator.

Palm OS Virtual Phone Guide

 Describes how to use Virtual Phone.

Document Description

http://www.palmos.com/dev/support/docs/

About This Book

Additional Resources

x

 Palm OS Protein C/C++ Compiler Language & Library Reference

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and development
documentation at

http://www.palmos.com/dev/support/kb/

http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

Part I
C/C++ Compiler
Language
Reference

This part is organized into the following chapters:

Language Overview 3

Language Elements 11

Palm OS Protein C/C++ Compiler Language & Library Reference

3

1

Language Overview

The Palm OS

®

 Protein C/C++ Compiler is a full-featured,
standards-based, optimizing C/C++ compiler.

• The Palm OS compiler supports the C language standard
ANSI/ISO/IEC 9899:1999, commonly known as C99, as a
freestanding implementation. The compiler uses this
language by default for C code.

It is required that you understand both the ANSI/ISO
standard C language and library. The ANSI/ISO 9899:1999 C
standards document completely describes the standard C
library functions, as do several widely-used references
including:

–

The C Programming Language

, Second Edition, by Brian W.
Kernighan and Dennis M. Ritchie, Prentice Hall, Inc.,
1988, ISBN 0-13-1103628.

–

C: A Reference Manual

, Fifth Edition, by Samuel P.
Harbison, Prentice Hall, Inc., 2002, ISBN 0-13-089592.

– Online at www.dinkumware.com/refxc.html.

• The Palm OS compiler supports the C++ language standard
ANSI/ISO/IEC 14882:1998(E). The C++ language standard is
also documented in other widely-used references including

The C++ Programming Language

, Third Edition, by Bjarne
Stroustrup, Addison-Wesley, 2000, ISBN 0-20-1700735.

The Palm OS compiler takes as input one or more C and/or C++
language text files (written according to the standards above) and
produces a corresponding number of assembly language source
files (see the

Palm OS Protein C/C++ Compiler Tools Guide

 for more
details).

Language Overview

C Technical Requirements

4

 Palm OS Protein C/C++ Compiler Language & Library Reference

C Technical Requirements

In addition to the ANSI/ISO/IEC requirements previously
mentioned, the C facilities of the Palm OS compiler meet the
following additional technical requirements:

• Supports a variety of useful extensions to the base language,
particularly those useful to the ARM architecture.

• Supports compiling with extensions removed that are
incompatible with the appropriate ANSI specification.

• Produces code for the ARM instruction set for version 4T
architecture microprocessors as defined in the

ARM Reference
Manual

, revision E.

• Adheres to the C calling conventions of the base standard
ABI for the ARM architecture.

• Adheres to the shared library conventions documented in the

ARM-Thumb Shared Library Architecture

 (ASHLA, document
number MADEIRA-0020-CUST-DDES A-01).

• Produces DWARF version 1.1 debugging information, if
debugging output is requested.

C++ Technical Requirements

In addition to the ANSI/ISO/IEC requirements previously
mentioned, the C++ facilities of the Palm OS compiler meet the
following additional technical requirements:

• Adheres to the C++ calling conventions of the base standard
ABI for the ARM architecture.

Language Overview

Limitations

Palm OS Protein C/C++ Compiler Language & Library Reference

5

Limitations

There are restrictions on some of the newer, more complex, and more
exotic features of the relevant standards.

Restrictions on C99

The C99 implementation is limited is the following ways:

• Complex arithmetic is not supported, and thus all usages of the

_Complex

 or

_Imaginary

 types are unsupported. This includes:

– float _Complex

– double _Complex

– long double _Complex

– float _Imaginary

– double _Imaginary

– long double _Imaginary

• Avoid use of the

long double

 type in the Simulator environment.
It is unsupported and should not be used. There is a binary
compatibility problem with i386 gcc and the compiler used to build
the Simulator.

• Floating-point environment control is not available, therefore the

__STDC_IEC_559__

 and

__STDC_IEC_559_COMPLEX__

 macros
are not defined.

• Variable length arrays are available, however during debugging,
the array length may

not

 be available. The allocation of local VLAs
is implemented via calls to malloc() and free().

Restrictions on C++
The C++ implementation is limited is the following way:

• Exported templates are not supported.

• The long long type is an extension to C++, not part of the
standard. If you wish to disable support for it, you can use the
-strict option.

Language Overview
Limitations

6 Palm OS Protein C/C++ Compiler Language & Library Reference

Restrictions on Data Types
Table 1.1 lists the maximum and minimum sizes of the integral data
types supported by the Palm OS Protein C/C++ Compiler.

Table 1.1 Maximum and minimum sizes of integer types

Constant Value Description

CHAR_BIT 8 Number of bits in a byte.

CHAR_MAX 255 Maximum value of an object of type
char.

CHAR_MIN 0 Minimum value of an object of type char.

INT_MAX +2147483647 Maximum value of an object of type int.

INT_MIN -2147483648 Minimum value of an object of type int.

LONG_MAX +2147483647 Maximum value of an object of type long
int.

LONG_MIN -2147483648 Minimum value of an object of type long
int.

LLONG_MAX +9223372036854775807 Maximum value of an object of type long
long int.

LLONG_MIN -9223372036854775808 Minimum value of an object of type long
long int.

MB_LEN_MAX 1 Maximum number of bytes in a multibyte
character, regardless of locale.

NOTE: This value should not be relied
upon. Its use is not recommended.

SCHAR_MAX +127 Maximum value of an object of type
signed char.

SCHAR_MIN -128 Minimum value of an object of type
signed char.

Language Overview
Limitations

Palm OS Protein C/C++ Compiler Language & Library Reference 7

Table 1.2 lists constants that describe the attributes of floating-point
data types.

SHRT_MAX +32767 Maximum value of an object of type
short int.

SHRT_MIN -32768 Minimum value of an object of type
short int.

UCHAR_MAX 255 Maximum value of an object of type
unsigned char.

USHRT_MAX 65535 Maximum value of an object of type
unsigned short.

UINT_MAX 4294967295 Maximum value of an object of type
unsigned int.

ULONG_MAX 4294967295 Maximum value of an object of type
unsigned long int.

ULLONG_MAX 18446744073709551615 Maximum value of an object of type
unsigned long long int.

Table 1.1 Maximum and minimum sizes of integer types

Constant Value Description

Table 1.2 Constants describing attributes of floating-point
numeric types

Constant Value Description

FLT_ROUNDS 1 Rounding is always performed toward the
nearest integral value.

DBL_DIG 15 The number of digits of decimal precision
for type double.

DBL_MANT_DIG 53 The number of bits used to represent the
mantissa for type double.

DBL_MAX_10_EXP 308 The maximum decimal exponent for type
double.

Language Overview
Limitations

8 Palm OS Protein C/C++ Compiler Language & Library Reference

DBL_MAX_EXP 1024 The maximum binary exponent for type
double.

DBL_MIN_10_EXP -308 The minimum decimal exponent for type
double.

DBL_MIN_EXP -1021 The minimum binary exponent for type
double.

DECIMAL_DIG 17 The number of decimal digits to which any
floating-point number of type long
double can be rounded, and back, without
changing its value.

FLT_DIG 6 The number of decimal digits of precision
for type float.

FLT_MANT_DIG 24 The number of bits in the mantissa for type
float.

FLT_MAX_10_EXP 38 The maximum decimal exponent for type
float.

FLT_MAX_EXP 128 The maximum binary exponent for type
float.

FLT_MIN_10_EXP -37 The minimum decimal exponent for type
float.

FLT_MIN_EXP -125 The minimum binary exponent for type
float.

FLT_RADIX 2 The exponent radix.

LDBL_DIG 15 The number of decimal digits of precision
for type long double.

LDBL_MANT_DIG 53 The number of bits in the mantissa for type
long double.

Table 1.2 Constants describing attributes of floating-point
numeric types

Constant Value Description

Language Overview
Limitations

Palm OS Protein C/C++ Compiler Language & Library Reference 9

LDBL_MAX_10_EXP 308 The maximum decimal exponent for type
long double.

LDBL_MAX_EXP 1024 The maximum binary exponent for type
long double.

LDBL_MIN_10_EXP -308 The minimum decimal exponent for type
long double.

LDBL_MIN_EXP -1021 The minimum binary exponent for type
long double.

DBL_MAX 1.797693134862
31571e+308

The maximum value that can be
represented by type double.

FLT_MAX 3.40282347e+38 The maximum value that can be
represented by type float.

LDBL_MAX 1.797693134862
31571e+308

The maximum value that can be
represented by type long double.

DBL_EPSILON 2.220446049250
3131e-16

The smallest value such that 1.0 +
DBL_EPSILON is not equal to 1.0 for type
double.

DBL_MIN 2.225073858507
20138e-308

The minimum value that can be
represented by type double.

FLT_EPSILON 1.19209290e-7 The smallest value such that 1.0 +
FLT_EPSILON is not equal to 1.0, for type
float.

FLT_MIN 1.17549435e-38 The minimum value that can be
represented by type float.

LDBL_EPSILON 2.220446049250
3131e-16

The smallest value such that 1.0 +
DBL_EPSILON is not equal to 1.0 for type
long double.

LDBL_MIN 2.225073858507
20138e-308

The minimum value that can be
represented by type long double.

Table 1.2 Constants describing attributes of floating-point
numeric types

Constant Value Description

Language Overview
Limitations

10 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 11

2
Language Elements
This chapter describes the Palm OS® compiler’s C/C++ language
differences, as compared to the ANSI standard. The following
language elements of C and C++ are described:

• Lexical Elements

• Preprocessor Directives

• Predefined Constants

Lexical Elements
This section describes the following lexical elements of C and C++:

• Character Set

• Comments

• Tokens

• Identifiers

• Keywords

• Constants

• Operators

• Separators

Character Set
The Palm OS compiler only specifically supports the ASCII
character set for input, although the compiler is intended to be 8-bit
neutral. The following lists the basic character set that is available at
both compile and run time:

• The uppercase and lowercase letters of the English alphabet

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Language Elements
Lexical Elements

12 Palm OS Protein C/C++ Compiler Language & Library Reference

• The decimal digits 0 through 9

0 1 2 3 4 5 6 7 8 9

• The following graphic characters:

! " # % & ' () * + , - . / : ; < > ? [\] _
{ } ˜

• The caret (^) character

• The split vertical bar (|) character

• The space character (' ')

• The control characters representing newline, horizontal tab,
vertical tab, and form feed.

The number sign (#) character is used for preprocessing only, and
the underscore (_) character is treated as a normal letter.

Comments
The following comments within C/C++ source code are permitted:

• The /* (slash, asterisk) characters, followed by any sequence
of characters (including newlines), followed by the
*/ (asterisk, slash) characters.

• The // (two slashes) characters followed by any sequence of
characters. A newline not immediately preceded by a line-
continuation (\) character terminates this form of comment.
This kind of comment is commonly called a single-line
comment.

You can put comments anywhere the language allows white space.

The Palm OS compiler also recognizes the following comments
within C/C++ source code, used to affect warning messages
generated by the compiler:

/*ARGSUSED*/
When placed before a function definition, this comment
suppresses compiler warnings about unused parameters in
functions.

/*NOTREACHED*/
When inserted at the beginning of a block of code that
appears unreachable by the compiler, this comment
suppresses the “unreachable code” warning.

Language Elements
Lexical Elements

Palm OS Protein C/C++ Compiler Language & Library Reference 13

Tokens
Source code is treated during preprocessing and compilation as a
sequence of tokens. There are five different types of tokens:

• Identifiers

• Keywords

• Constants

• Operators

• Separators

Adjacent identifiers, keywords, and literals must be separated with
white space. Other tokens should be separated by white space to
make the source code more readable. White space includes blanks,
horizontal and vertical tabs, newlines, form feeds, and comments.

Identifiers
An identifier consists of an arbitrary number of letters or digits;
however, it must not begin with a digit and it must not have the
same spelling as a keyword. Identifiers provide names for the
following language elements:

• Functions

• Data objects

• Labels

• Enumerated tags

• Variables

• Macros

• Typedefs

• Structure members

• Union members

Language Elements
Lexical Elements

14 Palm OS Protein C/C++ Compiler Language & Library Reference

Keywords
Keywords are identifiers reserved by the language for special use.

• Refer to the C language standard: ANSI/ISO/IEC 9899:1999
specification for a list of the keywords common to the C
language.

• Refer to the C++ language standard: ANSI/ISO/IEC
14882:1998 specification for a list of the keywords common to
the C++ language.

Extension keywords

The Palm OS compiler also recognizes the following keywords:

__align(n)
n may be 1, 2, 4, 8, or 16. When applied to a global object,
guarantees that the object is emitted with at least the
specified alignment. When applied to a type declaration (e.g.,
typedef or struct), applies to all global objects that are
instances of that type. Note: This keyword does not alter the
packing within a structure or modify what code is used to
access through a pointer. Use __pack or #pragma pack for
the former, and __packed for the latter.

asm
The asm keyword is used to pass information through the
compiler to the assembler. The Palm OS compiler permits
assembler code to be inlined using the keywords asm, _asm,
and __asm. The asm keyword has its normal C99 and C++
behavior; in addition, when used as the first keyword in a
function definition, the contents of the function are all taken
as assembly instructions and the function is emitted “naked,”
without a prologue or epilogue that pushes or pops registers
from the stack. (A ‘bx lr’ return instruction is placed after
your code, in case you do not explicitly return.) An asm
function is called in the same way as any function; its
arguments are in registers r0-r3 and on the stack, as is
defined by ATPCS:

Language Elements
Lexical Elements

Palm OS Protein C/C++ Compiler Language & Library Reference 15

asm int func (int a, int b) {
add r0, r0, r1 // return a+b

}

The “inline” qualifier can be used with asm functions to
indicate that the body of the asm function should be inserted
at each call-site. (The asm function should not explicitly
return or use labels. As in the above example, it should fall
off the end to return execution to the caller.)

Supported use of asm routines is limited to “nop,” as an
inline asm statement and relatively small asm functions that
do not use labels.

__asm
Followed by curly brackets, indicates a multi-line inline
assembly block. Otherwise, indicates inline assembly until
the end of the current line.

__inline
An exact alias of the normal inline keyword, in C99 or
C++, depending on which is being compiled.

__int64
Alias for long long type.

__pack(n)
n may be 0, 1, 2, 4, 8, or 16. Applied to a structure definition,
this keyword changes the packing in effect for that structure.
This keyword overrides any #pragma pack() setting for
this structure. If zero (0) is selected, natural alignment is used
(not the current #pragma pack value).

__packed
Hybrid modifier: when applied to a structure definition,
forces the packing to be 1-byte aligned. When applied to a
pointer, forces all accesses through that pointer to assume an
unaligned pointer. (This is also the case when a pointer to a
__packed structure is used.)

__pure
In function prototypes modifying the function name, this
keyword indicates that the function has no side-effects and
relies only on its input parameters. Currently, the Palm OS
compiler ignores this keyword.

Language Elements
Lexical Elements

16 Palm OS Protein C/C++ Compiler Language & Library Reference

__ror32(x, y)
A built-in operator that returns the 32-bit unsigned integer x
rotated right by y bits.

__value_in_regs
When this keyword is applied to a function prototype or
declaration, states that the return value of the function, if it is
a small structure (16 bytes or less), is passed in processor
registers r0-r3. (Normally structure return values are passed
by pointer in a hidden first argument.)

This calling convention keyword is potentially useful to
interoperate with special routines.

Example:

struct div_result {int div, rem;};
struct div_result __value_in_regs do_div (int x, int y);

__weak
In declarations of external objects (functions or data), this
modifier indicates that the object is not required and the
linker should fix up references if the object is not available
during linkage.

Constants
The value of any constant must be in the range of representable
values for its type. The C language contains the following types of
constants (also called literals):

• Integer (decimal, octal, or hexadecimal notation)

• Floating-point (double, float, long double, or
hexadecimal notation)

• Character (one or more characters in apostrophes)

• String (sequence of characters enclosed in double quotes)

• Enumeration

Operators
Operators can be classified as:

• Postfix

Language Elements
Lexical Elements

Palm OS Protein C/C++ Compiler Language & Library Reference 17

• Prefix

• Normal

• Boolean

• Assignment

• C++ Compatibility

Postfix

Postfix operators are operators that are suffixed to an expression,
such as, operand++.

Prefix

Prefix operators are operators that are prefixed to an expression,
such as, ++operand or !operand.

Normal

There are several normal operators that return the result defined for
each:

+ addition

- subtraction

* multiplication

/ division

% modulo

& AND

| OR

^ XOR

>> shift right

<< shift left

Boolean

The Boolean operators return either 1 (true) or 0 (false).

&& logical AND

|| logical OR

< less than

Language Elements
Lexical Elements

18 Palm OS Protein C/C++ Compiler Language & Library Reference

> greater than

<= less than equal

>= greater than equal

== equal

!= not equal

Assignment

An assignment operator stores the value of the right expression into
the left expression:

= a = b assigns the value of b into a

*= a *= b is equivalent to a = a * b

/= a /= b is equivalent to a = a / b

%= a %= b is equivalent to a = a % b

+= index += 2 is equivalent to index = index + 2

-= index -= 3 is equivalent to index = index - 3

<<= n1 <<= n2 is equivalent to n1 = n1 << n2

>>= n1 >>= n2 is equivalent to n1 = n1 >> n2

&= mask &= 2 is equivalent to mask = mask & 2

^= t1 ^= t2 is equivalent to t1 = t1 ^ t2

|= flag |= ON is equivalent to flag = flag | ON

C++ Compatibility

There are three new compound operators in C++:

.* Binds its second operand, which shall be of type
“pointer to member of T” (where T is a completely
defined class type) to its first operand, which shall be
of class T.

->* Binds its second operand, which shall be of type
“pointer to member of T” (where T is a completely
defined class type) to its first operand, which shall be
of type “pointer to T” or “pointer to a class of which T
is an unambiguous and accessible base class.”

Language Elements
Lexical Elements

Palm OS Protein C/C++ Compiler Language & Library Reference 19

:: Allows a type, an object, a function, an enumerator, or
a namespace declared in the global namespace to be
referred to even if its identifier has been hidden.

Language Elements
Preprocessor Directives

20 Palm OS Protein C/C++ Compiler Language & Library Reference

Separators
Separators can include:

() parenthesis

[] brackets

{ } braces

, comma

; semi-colon

: colon

Preprocessor Directives
Preprocessor directives instruct the preprocessor to act on the text of
the program. Preprocessor directives begin with the # token
followed by a preprocessor keyword. The # token must appear as
the first character that is not white space on a line. The # is not part
of the directive name and can be separated from the name with
white space. Except for some #pragma directives, preprocessor
directives can appear anywhere in a program.

#pragma
A pragma directive is an implementation-defined instruction to the
compiler. This section describes the #pragma commands that the
Palm OS compiler recognizes.

#pragma once
Indicates that a source file (usually a header) need not be
included again. (Thus an #include of the same header has
no effect.) If normal header guards are used, the compiler
optimizes them into a #pragma once:

#pragma once // unnecessary

#ifndef MY_HEADER_GUARD

#define MY_HEADER_GUARD

// header contents ...

#endif /* MY_HEADER_GUARD */

Language Elements
Predefined Constants

Palm OS Protein C/C++ Compiler Language & Library Reference 21

#pragma pack(n)
Sets current structure packing to n, where n is 1, 2, 4, 8, or 16.

#pragma pack()
Resets current structure packing to natural alignment.

#pragma pack (pop [,name] [,n])
If name is supplied, pops back to the position on the stack
with that name, otherwise pops a single value off the stack. If
n is supplied, sets the alignment to that value after popping.

#pragma pack (push [,name] [,n])
Pushes the current structure packing onto a stack. If name (an
identifier) is supplied, names the prior position on the stack.
If n is supplied, sets the packing to that value, after pushing
the original value.

#pragma weak name
Same as declaring the global object with the external name of
name with the __WEAK attribute.

Predefined Constants
This section describes the predefined constants provided by the
Palm OS Protein C/C++ Compiler.

__APGE__
Defined as 1.

__APOGEE__
Defined as 1.

__arm
Defined as 1.

_BOOL
Defined in C++ mode when bool is a keyword.

__cplusplus
Defined in C++ mode.

c_plusplus
Defined in default C++ mode, but not in strict mode.

__DATE__
Defined in all modes to the date of the compilation in the
form “Mmm dd yyyy.”

Language Elements
Predefined Constants

22 Palm OS Protein C/C++ Compiler Language & Library Reference

__EDG__
Always defined.

__EDG_VERSION__
Defined to an integral value that represents the version
number of the front end. For example, version 2.30 is
represented as 230.

__embedded_cplusplus
Defined as 1 in embedded C++ mode.

__EXCEPTIONS
Defined in C++ mode when exception handling is enabled.

_PACC_VER
0xMmmrrbbb, where (M=Major, m=minor, r=rev, b=build).
For example, 0x1000000D, for 1.0.0.13.

__PALMSOURCE__
Defined as 1.

__PSI__
Defined as 1.

__RTTI
Defined in C++ mode when RTTI is enabled.

__SIGNED_CHARS__
Defined when plain character is signed. (By default, the
character type is unsigned.)

__STDC__
Defined in ANSI C mode and in C++ mode. In C++ mode,
the value may be redefined.

__STDC_HOSTED__
Defined in C99 mode with the value zero (0).

__STDC_VERSION__
Defined in ANSI C mode with the value 199901L.

__TIME__
Defined in all modes to the time of the compilation in the
form “hh:mm:ss.”

_WCHAR_T
Defined in C++ mode when wchar_t is a keyword.

Part II
C/C++ Compiler
Library Reference

This part is organized in the following manner: general library and
runtime function information appears first, followed by detailed
header file information that documents the supported structures,
runtime functions, and macros. Note that header file chapters,
which are organized alphabetically, follow the “Runtime Library
Functions” chapter, which overviews the supported runtime
functions provided by the operating system and the unsupported
runtime functions not implemented by Palm OS.

STLport/iostream 25

Palm OS-Specific Libraries 27

Runtime Library Functions 29

assert.h . . 39

ctype.h . . 41

errno.h . . 43

ioctl.h . 45

iso646.h . 47

locale.h . . 49

math.h . 51

PalmMath.h. . 55

stdarg.h . 61

stddef.h . 63

stdio.h . 65

stdlib.h . . 67

string.h. . 69

strings.h . 73

time.h . 75

time.h . 77

uio.h . . 83

wchar.h . 85

Palm OS Protein C/C++ Compiler Language & Library Reference 25

3
STLport/iostream
The Palm OS® Protein C/C++ Compiler Suite includes and supports
the STLport implementation of the C++ standard template library.

Specific details regarding the implementation of the C++ STLport/
iostream material is not currently documented in this manual; for
documentation, visit http://www.stlport.org/doc/index.html.
However, the following information may be useful:

• iostreams are implemented in terms of stdio; cout is
connected to stdout, cerr is connected to stderr, and
cin is connected to stdin.

• no locale functionality beyond the C locale is supported.

• all other pieces of STL functionality are believed to be
supported.

For more information on the functionality provided by the C++
standard library, please consult documentation on the C++
language, such as The C++ Programming Language, Third Edition, by
Bjarne Stroustrup, or the ANSI/ISO specification, available as
ANSI/ISO/IEC document 14882:1998.

STLport/ iostream

26 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 27

4
Palm OS-Specific
Libraries
An integral part of the Palm OS® Protein C/C++ Compiler are the
standard headers, startup code, and run-time libraries. The supplied
run-time libraries serve several purposes:

• cpp — The cpp libraries implement objects common to any
C++ standard library (e.g., the standard exception objects).

• eabi — The eabi libraries implement preliminary ARM EABI
support on top of Palm OS. They implement the necessary
EABI support routines, translating them into Palm OS
specific routine calls.

• pacc — The pacc libraries implement objects and routines
that are unique or particular to the Palm OS compiler and are
not required or useful with any other tool chain.

• STLport — The C++ standard template library features
thread safety, improved memory utilization, improved run-
time efficiency, and new data structures, including hash
tables.

• support — This is an implementation of the floating-point
and integral support functions. The Palm OS compiler
automatically links with this library, however, the FloatMgr
library should also be linked.

Palm OS-Specif ic Libraries
The Palm OS Implementation of the Standard C Library (libc)

28 Palm OS Protein C/C++ Compiler Language & Library Reference

The Palm OS Implementation of the Standard C
Library (libc)

The Palm OS implementation of the standard C library is derived
from the NetBSD ARM source base, with some modification due to
the non-Unix nature of Palm OS:

• In the future, it may be possible to direct stdout/stdin
operations through other I/O devices; no timeline for this
has been stated.

• The C99 header <complex.h> is not supported in this
version of libc. Applications using complex numbers
should use STLport or another ANSI compliant C++ library.

• The C99 header <fenv.h> is not supported in this version of
libc. MathLib does not raise floating exceptions and does
not respond to varying rounding modes. Checking errno
and the return value can handle exceptional cases.

• There is also no <setjmp.h> implementation. The
<ErrTryCatch.h> header can provide much of the same
functionality, but the standard C interface is not yet
supported.

• In addition, the following POSIX header files are not
documented in this reference because they are either fairly
self-explanatory or do not contain any runtime library
functions that are provided by the operating system.

– <climits.h>

– <inttypes.h>

– <limits.h>

– <namespace.h>

– <paths.h>

– <signal.h>

– <stdint.h>

– <termios.h>

Palm OS Protein C/C++ Compiler Language & Library Reference 29

5
Runtime Library
Functions

Supported Functions
The following is an alphabetical list of runtime library functions, as
defined in the POSIX headers for Palm OS® 6.1, which are explicitly
provided by the operating system. For detailed information about
any of these functions, see the individual header file chapters that
follow, beginning with Chapter 6, “assert.h.”

posix/ctype.h

posix/math.h

isalnum() isgraph() isupper()

isalpha() islower() isxdigit()

isblank() isprint() tolower()

iscntrl() ispunct() tolower()

isdigit() isspace() toupper()

abs() expf() logf()

acos() expl() logl()

acosf() expm1() modf()

acosh() fabs() modff()

acosl() fabsf() modfl()

asin() fabsl() nextafter()

asinf() floor() pow()

Runtime Library Functions
Supported Functions

30 Palm OS Protein C/C++ Compiler Language & Library Reference

posix/stdio.h

asinh() floorf() powf()

asinl() floorl() powl()

atan() fmod() remainder()

atan2() fmodf() rint()

atan2f() fmodl() scalbn()

atan2l() frexp() sin()

atanf() frexpf() sinf()

atanh() frexpl() sinh()

atanl() hypot() sinhf()

cbrt() hypotf() sinhl()

ceil() hypotl() sinl()

ceilf() ilogb() sqrt()

ceill() ldexp() sqrtf()

copysign() ldexpf() sqrtl()

cos() ldexpl() tan()

cosf() log() tanf()

cosh() log10() tanh()

coshf() log10f() tanhf()

coshl() log10l() tanhl()

cosl() log1p() tanl()

exp() logb()

asprintf() freopen() rewind()

clearerr() fscanf() scanf()

fclose() fseek() setbuf()

Runtime Library Functions
Supported Functions

Palm OS Protein C/C++ Compiler Language & Library Reference 31

posix/stdlib.h

fdopen() fseeko() setbuffer()

feof() fsetpos() setlinebuf()

ferror() ftell() setvbuf()

fflush() ftello() snprintf()

fgetc() fwrite() sprintf()

fgetln() getc() sscanf()

fgetpos() getchar() ungetc()

fgets() gets() vasprintf()

fileno() getw() vfprintf()

fopen() perror() vprintf()

fprintf() printf() vscanf()

fpurge() putc() vsnprintf()

fputc() putchar() vsprintf()

fputs() puts() vsscanf()

fread() putw()

abs() inplace_realloc() random()

atof() labs() realloc()

atoi() ldiv() srand()

atol() llabs() srandom()

atoll() malloc() strtod()

bsearch() qsort() strtol()

calloc() qsort_r() strtoll()

div() rand() strtoul()

free() rand_r() strtoull()

Runtime Library Functions
Supported Functions

32 Palm OS Protein C/C++ Compiler Language & Library Reference

posix/string.h

posix/strings.h

posix/time.h

posix/sys/ioctl.h

memchr() strcspn() strncpy()

memcmp() strdup() strpbrk()

memcpy() strerror() strrchr()

memmove() strerror_r() strsep()

memset() strlcat() strspn()

strcat() strlcpy() strstr()

strchr() strlen() strtok()

strcmp() strncat() strtok_r()

strcoll() strncmp() strxfrm()

strcpy()

bcopy() strcasecmp()

bzero() strncasecmp()

asctime() difftime() mktime()

asctime_r() gmtime() strftime()

clock() gmtime_r() time()

ctime() localtime() time()

ctime_r() localtime_r()

ioctl()

Runtime Library Functions
Unsupported Functions

Palm OS Protein C/C++ Compiler Language & Library Reference 33

posix/sys/PalmMath.h

posix/sys/time.h

posix/sys/uio.h

Unsupported Functions
The following is an alphabetical list of runtime library functions,
sorted by header file name, declared in the POSIX headers that are
not implemented by the operating system.

posix/ctype.h

posix/inttypes.h

posix/locale.h

lceilf() lfloorf() sincosf()

getcountrycode() palm_seconds_to_time_t()

getgmtoffset() settime()

gettimezone() settimezone()

hastimezone() system_real_time()

localtime_tz() system_time()

mktime_tz() time_t_to_palm_seconds()

readv() writev()

isascii()
(this is handled via a #define)

toascii()
(this is handled via a #define)

strtoimax() strtoumax()

setlocale()

Runtime Library Functions
Unsupported Functions

34 Palm OS Protein C/C++ Compiler Language & Library Reference

posix/math.h

posix/signal.h

posix/stdio.h

erf() islessequal() modf()

erfc() islessgreater() nan()

exp2() isunordered() nearbyint()

fdim() lgamma() nexttoward()

fma() llrint() remquo()

fmax() llround() round()

fmin() log2() scalbln()

isgreater() lrint() tgamma()

isgreaterequal() lround() trunc()

isless()

In addition, any of the above functions that have float overrides (suffixed with an “f”)
or long double overrides (suffixed with an “l”) are also unsupported. For example,
exp2f() and exp2l().

kill() sigblock() sigpending()

killpg() sigdelset() sigprocmask()

psignal() sigemptyset() sigreturn()

raise() sigfillset() sigsetmask()

sigaction() siginterrupt() sigstack()

sigaddset() sigismember() sigsuspend()

sigaltstack() sigpause() sigvec()

ctermid() getc_unlocked() remove()

cuserid() getchar_unlocked() rename()

Runtime Library Functions
Unsupported Functions

Palm OS Protein C/C++ Compiler Language & Library Reference 35

posix/stdlib.h

posix/string.h

flockfile() pclose() tempnam()

ftrylockfile() popen() tmpfile()

funlockfile() putc_unlocked() tmpnam()

funopen() putchar_unlocked()

a64l() drand48() mktemp()

abort() erand48() mrand48()

alloca() exit() nrand48()

atexit() getbsize() putenv()

cfree() getenv() qdiv()

cgetcap() getloadavg() radixsort()

cgetclose() heapsort() realpath()

cgetent() initstate() seed48()

cgetfirst() jrand48() setenv()

cgetmatch() l64a() setkey()

cgetnext() lcong48() setstate()

cgetnum() lldiv() sradixsort()

cgetset() lrand48() srand48()

cgetstr() mergesort() ttyslot()

cgetustr() mkdtemp() unsetenv()

daemon() mkstemp() valloc()

devname()

memccpy()

Runtime Library Functions
Unsupported Functions

36 Palm OS Protein C/C++ Compiler Language & Library Reference

posix/strings.h

posix/termios.h

posix/time.h

posix/wchar.h

bcmp() index()

ffs() rindex()

tcdrain() tcflush() tcsendbreak()

tcflow() tcgetpgrp() tcsetpgrp()

clock_getres() strptime() timer_getoverrun()

clock_gettime() time2posix() timer_gettime()

clock_settime() timelocal() timer_settime()

nanosleep() timeoff() timezone()

offtime() timer_create() tzset()

posix2time() timer_delete() tzsetwall()

fwide() wcsncat() wcstoul()

wcscat() wcsncmp() wcswidth()

wcschr() wcsncpy() wcwidth()

wcscmp() wcspbrk() wmemchr()

wcscpy() wcsrchr() wmemcmp()

wcscspn() wcsspn() wmemcpy()

wcslcat() wcsstr() wmemmove()

wcslcpy() wcstod() wmemset()

wcslen() wcstol()

Runtime Library Functions
Unsupported Functions

Palm OS Protein C/C++ Compiler Language & Library Reference 37

posix/machine/arm/param.h

posix/sys/bswap.h

posix/sys/socket.h

posix/sys/stat.h

posix/sys/time.h

posix/sys/uio.h

delay()

bswap16() bswap32() bswap64()

socketpair()

chflags() lchflags() mkfifo()

chmod() lchmod() mknod()

fchflags() lstat() stat()

fchmod() mkdir() umask()

fstat()

adjtime() itimerdecr() ratecheck()

adjtime1() itimerfix() setitimer()

clock_settime1() lutimes() settimeofday()

futimes() microtime() settimeofday1()

getitimer() ppsratecheck() utimes()

gettimeofday()

preadv() pwritev()

Runtime Library Functions
Unsupported Functions

38 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 39

6
assert.h
The <assert.h> header defines the assert() macro, which is
used for debugging purposes. It also refers to another macro,
NDEBUG, which is defined elsewhere.

Functions and Macros

assert Macro
Purpose Outputs a diagnostic message to standard errorand stops the

program if a test fails.

Prototype assert (condition)

Parameters → condition
An expression to test; if the result of the expression is false,
the diagnostic message is displayed and the program
terminates. If the result is true, this macro has no effect.

Example In the following example, the program will terminate if the data
buffer could not be allocated.

char *buffer = malloc(150);
assert(buffer);

assert.h
assert

40 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 41

7
ctype.h
The <ctype.h> header defines several functions useful for
classifying and converting characters. All of the functions declared
in this header are part of the C99 standard.

NOTE: None of the functions in <ctype.h> are internationally
safe. They work only for 7-bit ASCII characters. Many of these
functions have Palm OS specific equvalents that are
internationally safe. These are listed in Table 7.1.

Table 7.1 Functions with internationally safe equivalents

Function Palm OS specific equivalent

isalnum() TxtCharIsAlNum()

isalpha() TxtCharIsAlpha()

iscntrl() TxtCharIsCntrl()

isdigit() TxtCharIsDigit()

isgraph() TxtCharIsGraph()

islower() TxtCharIsLower()

isprint() TxtCharIsPrint()

ispunct() TxtCharIsPunct()

isspace() TxtCharIsSpace()

isupper() TxtCharIsUpper()

isxdigit() TxtCharIsHex()

ctype.h

42 Palm OS Protein C/C++ Compiler Language & Library Reference

For details on the internationally safe functions listed above, see the
book Exploring Palm OS: Text and Localization.

tolower() StrToLower() and
TxtTransliterate()

toupper() TxtTransliterate()

Table 7.1 Functions with internationally safe equivalents

Function Palm OS specific equivalent

Palm OS Protein C/C++ Compiler Language & Library Reference 43

8
errno.h
The <errno.h> header provides the global error code variable
errno.

Global Variables

errno Variable
Purpose Global error code variable.

Declared In posix/errno.h

Prototype extern int errno

Comments The errno variable is used by many functions to return error
values. The value of errno is defined only after a call to a function
for which it is explicitly stated to be set and until it is changed by the
next function call. The value of errno should only be examined
when it is indicated to be valid by a function’s return value.
Programs should obtain the definition of errno by the inclusion of
<errno.h>. It is unspecified whether errno is a macro or an
identifier declared with external linkage.

The errno variable has a value of zero (0) at the beginning. If an
error occurs, then this variable is given the value of the error
number. In some cases, the behavior of the math library with regard
to errno is implementation defined.

Nothing in the <errno.h> header is specific to Palm OS®. The
specific numeric values associated with the error names are not
portable and should be treated as opaque by applications.

errno.h
errno Variable

44 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 45

9
ioctl.h
The <ioctl.h> header defines a function to manipulate the
underlying device parameters of special files. It defines the
ioctl() function, which is a standard Posix function.

ioctl .h

46 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 47

10
iso646.h
The <iso646.h> header defines several constants that expand to
the corresponding tokens, useful for programming in ISO 646
variant character sets.

Operators
Purpose Defines constants that expand to the corresponding tokens.

Declared In posix/iso646.h

Constants #define and &&
The operator &&.

#define and_eq &=
The operator &=.

#define bitand &
The operator &.

#define bitor |
The operator |.

#define compl ~
The operator ~.

#define not !
The operator !.

#define not_eq !=
The operator !=.

#define or ||
The operator ||.

#define or_eq |=
The operator |=.

#define xor ^
The operator ^.

#define xor_eq ^=
The operator ^=.

iso646.h
Operators

48 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 49

11
locale.h
The <locale.h> header support in libc has not been integrated
with Palm OS® and thus should not be used. The macros and
functions defined in this header do not work as expected and
should be avoided.

locale.h

50 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 51

12
math.h
The <math.h> header defines several mathematical functions.

This header is new with Palm OS® Protein. It is a broad subset of
section 7.12 of the C language standard ANSI/ISO/IEC 9899:1999.

MathLib is part of SystemLib. To use MathLib, simply include the
<math.h> header in your source files.

Supported features

The Palm OS Protein C/C++ Compiler supports the use of infinity
and NaN (not-a-number) values.

The following C99 macros are supported in <math.h>:

• FLT_EVAL

• FP_ILOGBNAN

• FP_ILOGB0

• FP_INFINITE

• FP_NAN

• FP_NORMAL

• FP_SUBNORMAL

• FP_ZER0

• HUGE_VAL

• HUGE_VALF

• HUGE_VALL

• INFINITY

• MATH_ERREXCEPT

• math_errhandling

• MATH_ERRNO

• NAN

math.h

52 Palm OS Protein C/C++ Compiler Language & Library Reference

Differences from the C99 specification

• All of <math.h> as specified in the C language standard
ANSI/ISO/IEC 9899:1990 is provided as well as most of the
extensions specified in 1999 standard. Parts of <math.h> that
are not supported are listed under the line:

#ifdef __USE_C99_EXTENSIONS__

Functions in this section are preprocessed out by default and
are not tested or supplied by PalmSource.

• Parallel sets of functions for float and long double
arguments types are defined only for 1989 ANSI C functions.

Constraints

• Existing 68K applications must continue to supply the 68K
MathLib if required by the application.

• There are cases in which the behavior of the math library with
respect to the errno error reporting mechanism are
implementation defined. For details on how the Palm OS
Protein C/C++ Compiler handles errors in these cases, see
“Behavior of errno” on page 53.

• The float and long double overloads as specified in
section 26.5 of the ANSI C++ standard are not provided.

• The float and long double counterparts suffixed by “f”
and “l” for the functions defined in section 7.12 of the 1989
ANSI C language standard are supported. A few of the float
counterparts have Palm OS implementations, but most of
these simply cast and return the double version.

• A handful of single precision counterparts are provided as a
high performance alternative to their double equivalents.
However, there are some additional deviations from the
standard that were made to achieve high performance,
including:

– none of the single precision functions set the global
variable errno.

– sqrtf() flushes denormals to zero (0).

– ceilf(-0) is 0 not –0 as specified in Annex F.9.6.1 of the
ANSI standard.

math.h

Palm OS Protein C/C++ Compiler Language & Library Reference 53

– hypotf() does not follow the spec for NaNs and
infinities.

• The library, libm.a, is no longer supported and must be
removed from existing projects.

Behavior of errno

There are two situations in which case an infinite result can occur as
the result of an operation. The first is when a range error occurs,
where the computation using finite arguments causes a result that
lies outside the range of values that can be represented by the data
type. The second case is when the result is infinite because the
mathematics involved actually results in an infinite result (such as
when an input argument is infinite). In this case, there is no range
error, but the result is still infinite.

Some functions only have two ways to result in an infinite value—
either the result is infinite, or the result cannot be represented due to
its size. In this case, errno can be useful, because it will indicate no
error if the result is in fact infinity, or ERANGE if a range error
occurred.

On the other hand, if the function has multiple ways in which
infinity can be the result, errno cannot be used as a method for
determining whether or not the value is legitimate or not.

For this reason, the Palm OS Protein C/C++ Compiler handles
errno in these cases as follows:

errno is set only when it can be used to definitively distinguish
between multiple ways of arriving at the same return value. One
should not expect errno to be set in cases where it will not help
determine the reason why the result was achieved. See Table 12.1.

Table 12.1 errno handling for specific cases

Function Name Sets errno Explanation

hypot() ERANGE Overflow occurs when hypot(finite
but large, finite) is called.

scalbn() /
ldexp()

no Too many ways for infinity to result

math.h

54 Palm OS Protein C/C++ Compiler Language & Library Reference

nextafter() ERANGE nextafter(DBL_MAX, INFINITY)

ilogb() no Both 0 and denormals have the exponent 0.

logb() / log10()
/ log()

EDOM logx(0) isn’t equal to logx(denormal).

pow() ERANGE pow(finite > 0, finite large >
0) indicates that overflow occurred.
Required by section 7.12.1 of the standard.

pow(INFINITY,
INFINITY)

no Overflow does not occur, since the original
values were not finite.

any
function(NaN)

no Ideally, the function should propagate the
same NaN that was passed in, with no
additional side effects

cos(x=±inf) /
sin(x=±inf) /
tan(x=–inf)

EDOM Distinguishes between x being infinite or
NaN. Also, the limit as x approaches
infinity does not exist.

Table 12.1 errno handling for specific cases

Function Name Sets errno Explanation

Palm OS Protein C/C++ Compiler Language & Library Reference 55

13
PalmMath.h
The <PalmMath.h> header defines Palm OS specific mathematical
functions not specified in the ANSI/ISO standard.

Constants

Math Constants
Purpose These constants are intended to be used as 32-bit floats. These

constants should not be used as double precision arguments.
However, a new double precision version of each of these may be
created by removing the “f” suffix from the end of each decimal
string.

Declared In posix/sys/palmmath.h

Constants #define M_E 2.7182818284590452354f
Approximates the mathematical constant e.

#define M_LOG2E 1.4426950408889634074f
Approximates the mathematical constant log2(e).

#define M_LOG10E 0.43429448190325182765f
Approximates the mathematical constant log10(e).

#define M_LN2 0.69314718055994530942f
Approximates the mathematical constant loge(2).

#define M_LN10 2.30258509299404568402f
Approximates the mathematical constant loge(10).

#define M_PI 3.14159265358979323846f
Single precision approximation to π.

#define M_PI_2 1.57079632679489661923f
Single precision approximation to π/2.

#define M_1_PI 0.31830988618379067154f
Single precision approximation to 1/π.

PalmMath.h
Math Constants

56 Palm OS Protein C/C++ Compiler Language & Library Reference

#define M_PI_4 0.78539816339744830962f
Single precision approximation to π/4.

#define M_2_PI 0.63661977236758134308f
Single precision approximation to 2/π.

#define M_2_SQRTPI 1.12837916709551257390f
Single precision approximation to 2/√π.

#define M_SQRT2 1.41421356237309504880f
Approximates the mathematical constant √2.

#define M_SQRT1_2 0.70710678118654752440f
Approximates the mathematical constant 1/√2.

#define PI M_PI
Single precision approximation to π.

#define PI2 M_PI_2
Single precision approximation to π/2.

#define M_PI_3 1.047197551196597746154f
Single precision approximation to π/3.

#define M_3_PI_4 2.356194490192344928846f
Single precision approximation to 3*π/4.

#define M_5_PI_4 3.926990816987241548076f
Single precision approximation to 5*π/4.

#define M_3_PI_2 4.71238898038468985769f
Single precision approximation to 3*π/2.

#define M_7_PI_4 5.497787143782138167306f
Single precision approximation to 7*π/4.

PalmMath.h
lfloorf

Palm OS Protein C/C++ Compiler Language & Library Reference 57

Functions and Macros

lceilf Function
Purpose Computes the nearest 32-bit signed integer not less than x.

Declared In posix/sys/palmmath.h

Prototype int32_t lceilf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the nearest 32-bit signed integer not less than x. In cases
where x is out of the range of representable integers, +/-INT_MAX is
returned.

Comments Exceptions are never raised.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also lfloorf()

lfloorf Function
Purpose Computes the nearest 32-bit signed integer not greater than x.

Declared In posix/sys/palmmath.h

Prototype int32_t lfloorf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the nearest 32-bit signed integer not greater than x. In cases
where x is out of the range of representable integers, +/-INT_MAX is
returned.

Comments Exceptions are never raised.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also lceilf()

PalmMath.h
max_c

58 Palm OS Protein C/C++ Compiler Language & Library Reference

max_c Macro
Purpose Returns the larger of two values.

Declared In posix/sys/PalmMath.h

Prototype #define max_c(real floating a, real floating b)

Parameters → a
The first value to compare.

→ b
The second value to compare.

Returns Returns the greater of the two input values.

Compatibility This macro can be used in C code, unlike the standard max()
macro, which uses C++ templates.

See Also min_c()

min_c Macro
Purpose Returns the lesser of two values.

Declared In posix/sys/PalmMath.h

Prototype #define min_c(real floating a, real floating b)

Parameters → a
The first value to compare.

→ b
The second value to compare.

Returns Returns the lesser of the two input values.

Compatibility This macro can be used in C code, unlike the standard min()
macro, which uses C++ templates.

See Also max_c()

sincosf Function
Purpose Computes an approximation to the sine (sin_val) and cosine

(cos_val) of any angle in a single call.

PalmMath.h
sincosf

Palm OS Protein C/C++ Compiler Language & Library Reference 59

Declared In posix/sys/palmmath.h

Prototype void sincosf (float angle, float *cos_val,
float *sin_val)

Parameters → angle
Must be specified in radians.

→ cos_val
Cosine value.

→ sin_val
Sine value.

Returns Returns the approximation to the sine (sin_val) and cosine
(cos_val) of the specified angle.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

PalmMath.h
sincosf

60 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 61

14
stdarg.h
The <stdarg.h> header defines several macros useful in the
creation of functions that accept a variable number of arguments.

The macros defined in this header are all part of the C99 standard.

stdarg.h

62 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 63

15
stddef.h
The <stddef.h> header defines the commonly used offsetof()
macro, which is part of the C99 standard.

stddef.h

64 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 65

16
stdio.h
The <stdio.h> header defines functions for performing input and
output.

The current expected behavior of the standard I/O library is to
direct stdout and stderr output to a debugger via
DbgMessage(), and to read bytes from stdin via the debugger
using DbgGetChar(). Attempting to close one of the standard files
[stdin/stdout/stderr] is not currently supported.

The functions in stdio.h are all standard libc functions, and are
internationally aware, except that when printing floating-point
numbers, they do not use a local-sensitive decimal character.

stdio.h

66 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 67

17
stdlib.h
The <stdlib.h> header defines several general operation
functions and macros. Most of the functions defined in this header
are standard libc functions; only inplace_realloc() is specific
to Palm OS®.

NOTE: Functions that convert from strings to numbers are not
multi-byte character aware, and do not take into account locale-
sensitive settings such as the character used for decimals. Use
the Palm OS specific equivalent functions if you need to be
internationally safe.

stdlib.h
Functions and Macros

68 Palm OS Protein C/C++ Compiler Language & Library Reference

Functions and Macros

inplace_realloc Function
Purpose Attempts to resize the memory block without moving it.

Declared In posix/stdlib.h

Prototype void *inplace_realloc (void *ptr, size_t size)

Parameters → ptr
The previously allocated memory.

→ size
The size, in bytes, to change to.

Returns Returns a pointer, possibly identical to ptr, to the allocated memory
upon successful completion. Otherwise, a NULL pointer is returned,
in which case the memory referenced by ptr is still available and
intact.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

Palm OS Protein C/C++ Compiler Language & Library Reference 69

18
string.h
The <string.h> header defines several functions useful for
manipulating strings (character arrays) and memory buffers.

Several standard string and memory manipulation functions have
Palm OS® specific equivalents; the equivalents are provided for
backward compatibility, but the C99 versions are preferred for
future development. See Exploring Palm OS: Memory, Databases, and
Files for details on the Palm OS specific functions. Table 18.1 lists the
C99 functions and their Palm OS equivalents.

Table 18.1 C99 functions and their Palm OS specific
equivalents

C99 Function Palm OS Equivalent

memmove() MemMove()

memset() MemSet()

strcat() StrCat()

strcmp() StrCompare()

strcoll() StrCompare()

strcpy() StrCopy()

strerror() SysErrString()

strerror_r() SysErrString()

strlcat() StrLCat()

strlcpy() StrLCopy()

strlen() StrLen()

string.h

70 Palm OS Protein C/C++ Compiler Language & Library Reference

For details on SysErrString(), see Exploring Palm OS: System
Management.

The functions listed in Table 18.2 are not internationally safe.

strncat() StrNCat()

NOTE: StrNCat() has a different
meaning for its parameters, so a careful
code review is necessary when shifting
between strncat() and StrNCat().

strncmp() StrNCompare()

strncpy() StrNCopy()

strstr() StrStr()

Table 18.1 C99 functions and their Palm OS specific
equivalents

C99 Function Palm OS Equivalent

Table 18.2 Functions that are not internationally safe

Function Name Comments

strchr() Not multi-byte aware.

strcmp() Not multi-byte aware, and not locale
sensitive.

strcspn() Not multi-byte aware.

strlcat() Not multi-byte aware.

strlcpy() Not multi-byte aware.

strncat() Not multi-byte aware; truncation can occur
in the middle of a multi-byte character.

strncmp() Not multi-byte aware or local sensitive.

strncpy() Not multi-byte aware.

string.h

Palm OS Protein C/C++ Compiler Language & Library Reference 71

strpbrk() Not multi-byte aware.

strrchr() Not multi-byte aware.

strsep() Not multi-byte aware.

strspn() Not multi-byte aware.

strstr() Not multi-byte aware.

strtok() Not multi-byte aware.

strtok_r() Not multi-byte aware.

strxfrm() Not yet implemented.

Table 18.2 Functions that are not internationally safe

Function Name Comments

string.h

72 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 73

19
strings.h
The <strings.h> header defines several functions useful for
manipulating strings; these functions adhere to the Posix standard.

strcasecmp() and strncasecmp() are not internationally safe
to use; they are neither multi-byte aware nor locale sensitive. These
functions are equivalent to StrCaselessCompare() and
StrNCaselessCompare(), respectively. See the book Exploring
Palm OS: Text and Localization for details.

strings.h

74 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 75

20
time.h
The <time.h> header defines several functions useful for reading
and converting the current time and date.

The functions listed in Table 20.1 are not internationally safe to use.

The functions defined in this header are all standard libc
functions.

Table 20.1 Functions that are not internationally safe

Function Comments

asctime() Not multi-byte aware, not locale sensitive,
and returns unlocalized text.

asctime_r() Not multi-byte aware, not locale sensitive,
and returns unlocalized text.

ctime() Not multi-byte aware, not locale sensitive,
and returns unlocalized text.

ctime_r() Not multi-byte aware, not locale sensitive,
and returns unlocalized text.

strftime() Not multi-byte aware, not locale sensitive,
and returns unlocalized text.

t ime.h

76 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 77

21
time.h
The <time.h> header defines several Palm OS® specific functions
useful for reading and converting the current time and date.

Constants

TZNAME_MAX
Purpose Defines the maximum length of a time zone identifier string.

Declared In posix/sys/time.h

Constants #define TZNAME_MAX 32

Functions and Macros

getcountrycode Function
Purpose Gets the two-byte country code for the specified time zone.

Declared In posix/sys/time.h

Prototype status_t getcountrycode (const char *tzname,
char *buf, size_t bufsize)

Parameters → tzname
The time zone.

→ buf
The buffer.

→ bufsize
The size of the buffer.

Returns Returns P_OK upon successful completion; otherwise it returns
P_ERROR.

t ime.h
getgmtoffset

78 Palm OS Protein C/C++ Compiler Language & Library Reference

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

getgmtoffset Function
Purpose Gets the difference in seconds between Greenwich Mean Time

(GMT) and local standard time.

Declared In posix/sys/time.h

Prototype int32_t getgmtoffset (const char *tznanme)

Parameters → tzname
The time zone.

Returns Returns the current GMT offset, which takes into account daylight
saving time. This difference is positive for time zones West of
Greenwich and negative for zones East of Greenwich.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

gettimezone Function
Purpose Copies the current system time zone name into buf.

Declared In posix/sys/time.h

Prototype ssize_t gettimezone (char *buf, size_t bufsize)

Parameters → buf
The buffer.

→ bufsize
The size of the buffer.

Returns Returns the number of bytes copied into buf upon successful
completion; otherwise it returns P_ERROR.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

See Also hastimezone(), settimezone()

hastimezone Function
Purpose Determines if the system has the specified timezone. That is, if a

timezone database is installed for the specified timezone.

t ime.h
mktime_tz

Palm OS Protein C/C++ Compiler Language & Library Reference 79

Declared In posix/sys/time.h

Prototype int hastimezone (const char *tzname)

Parameters → tzname
The time zone.

Returns Returns P_OK upon successful completion; otherwise it returns
P_ERROR.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

See Also gettimezone(), settimezone()

localtime_tz Function
Purpose Converts the specified UTC time in the time zone to a broken-down

time.

Declared In posix/sys/time.h

Prototype void localtime_tz (const time_t *timer,
const char *tzname, struct tm *result)

Parameters → timer
The calendar time.

→ tzname
The time zone.

← result
A tm structure.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

mktime_tz Function
Purpose Converts a specified broken-down time in the time zone to UTC

time. If the tm_isdst member of the tm struct is negative, this
function tries to determine if the specified time zone is currently in
daylight saving time.

Declared In posix/sys/time.h

Prototype time_t mktime_tz (struct tm *tm,
const char *tzname)

t ime.h
palm_seconds_to_time_t

80 Palm OS Protein C/C++ Compiler Language & Library Reference

Parameters → tm
A tm structure.

→ tzname
The time zone.

Returns Returns the UTC time.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

palm_seconds_to_time_t Function
Purpose Takes as input the number of seconds since 1/1/1904 (old Palm

epoch) and returns the number of seconds since 1/1/1970 (Unix
epoch).

Declared In posix/sys/time.h

Prototype time_t palm_seconds_to_time_t (uint32_t seconds)

Parameters → seconds
The number of seconds.

Returns Returns the number of seconds since 1/1/1970 (Unix epoch).

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

See Also time_t_to_palm_seconds()

settime Function
Purpose Sets the system time to the specified time.

Declared In posix/sys/time.h

Prototype status_t settime (time_t time)

Parameters → time
The system time.

Returns Returns P_OK upon successful completion.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

t ime.h
time_t_to_palm_seconds

Palm OS Protein C/C++ Compiler Language & Library Reference 81

settimezone Function
Purpose Sets the system’s time zone.

Declared In posix/sys/time.h

Prototype status_t settimezone (const char *tzname)

Parameters → tzname
The time zone.

Returns Returns P_OK upon successful completion; otherwise it returns
P_ERROR.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

See Also gettimezone(), hastimezone()

system_real_time Function
Purpose Gets the value of the real time clock in nanoseconds.

Declared In posix/sys/time.h

Prototype nsecs_t system_real_time (void)

Returns Returns the value of the real time clock in nanoseconds.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

system_time Function
Purpose Gets the value of the run time clock in nanoseconds.

Declared In posix/sys/time.h

Prototype nsecs_t system_time (void)

Returns Returns the value of the run time clock in nanoseconds.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

time_t_to_palm_seconds Function
Purpose Takes as input the number of seconds since 1/1/1970 (Unix epoch)

and returns the number of seconds since 1/1/1904 (old Palm
epoch).

t ime.h
time_t_to_palm_seconds

82 Palm OS Protein C/C++ Compiler Language & Library Reference

Declared In posix/sys/time.h

Prototype uint32_t time_t_to_palm_seconds (time_t seconds)

Parameters → seconds
The number of seconds.

Returns Returns the number of seconds since 1/1/1904 (old Palm epoch).

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

See Also palm_seconds_to_time_t()

Palm OS Protein C/C++ Compiler Language & Library Reference 83

22
uio.h
The <uio.h> header defines two functions useful for vector I/O
operations, as well as the iovec structure they require.

Structures and Types

iovec Struct
Purpose Defines an I/O vector; that is, a buffer address and size.

Declared In posix/sys/uio.h

Prototype struct iovec {
 void *iov_base;
 size_t iov_len;
}

Fields iov_base
The base address of a memory region for input or output.

iov_len
The size of the memory pointed to by iov_base.

Functions and Macros

readv Function
Purpose Performs the same action as read(), but scatters the input data into

the iovcnt buffers specified by the members of the iov array:
iov[0], iov[1], ..., iov[iovcnt-1].

Declared In posix/sys/uio.h

Prototype ssize_t readv (int d, const struct iovec *iov,
size_t iovcnt)

uio.h
writev

84 Palm OS Protein C/C++ Compiler Language & Library Reference

Parameters → d
The position to start reading from.

→ iov
The array.

→ iovcnt
The buffer.

Returns Returns the number of bytes actually read and placed in the buffer.
Zero (0) is returned if end-of-file is read. Otherwise, -1 is returned
and the global variable errno is set to indicate the error.

See Also read()

writev Function
Purpose Performs the same action as write(), but gathers the output data

from the iovcnt buffers specified by the members of the iov array:
iov[0], iov[1], ..., iov[iovcnt-1].

Declared In posix/sys/uio.h

Prototype ssize_t writev (int d, const struct iovec *iov,
size_t iovcnt)

Parameters → d
The position to start gathering from.

→ iov
The array.

→ iovcnt
The buffer.

Returns Returns the number of bytes actually written. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

See Also write()

Palm OS Protein C/C++ Compiler Language & Library Reference 85

23
wchar.h
The <wchar.h> header is included for compliance purposes only.

None of the C wide-char (wchar_t) functionality is supported in
Palm OS. (In fact, the wchar_t type is not even used by Palm OS
since it can vary in size from 8-bits to 32-bits depending on the
compiler.) For safe manipulation of text regardless of the device’s
character encoding, use the Palm OS String and Text Managers; see
Exploring Palm OS: Text and Localization.

wchar.h

86 Palm OS Protein C/C++ Compiler Language & Library Reference

Palm OS Protein C/C++ Compiler Language & Library Reference 87

Index

Symbols
#pragma 20
__align 14
__APGE__ 21
__APOGEE__ 21
__arm 21
__asm 15
__cplusplus 21
__DATE__ 21
__EDG__ 22
__EDG_VERSION__ 22
__embedded_cplusplus 22
__EXCEPTIONS 22
__inline 15
__int64 15
__pack 15
__packed 15
__PALMSOURCE__ 22
__PSI__ 22
__pure 15
__ror32 16
__RTTI 22
__SIGNED_CHARS__ 22
__STDC__ 22
__STDC_HOSTED__ 22
__STDC_IEC_559__ 5
__STDC_IEC_559_COMPLEX__ 5
__STDC_VERSION__ 22
__TIME__ 22
__value_in_regs 16
__weak 16
_BOOL 21
_Complex 5
_Imaginary 5
_PACC_VER 22
_WCHAR_T 22

Numerics
4T architecture 4

A
and 47
and_eq 47

ANSI/ISO/IEC 14882:1998 3
ANSI/ISO/IEC 9899:1999 3
ARM-Thumb Shared Library Architecture 4
ASHLA 4
asm 14
assert() 39
assert.h 39

B
bitand 47
bitor 47

C
c_plusplus 21
C99 3
character set 11
climits.h 28
comments 12
compl 47
complex.h 28
compute

an approximation to the sine and cosine of any
angle 58

the nearest 32-bit signed integer not greater
than x 57

the nearest 32-bit signed integer not less than
x 57

constants
math 55

convert
a specified broken-down time 79
the specified UTC time 79

copy
the current system time zone 78

cpp library 27
ctype.h 41

D
DWARF debugging information 4

E
eabi library 27
errno 43

88 Palm OS Protein C/C++ Compiler Language & Library Reference

errno.h 43
ErrTryCatch.h 28

F
fenv.h 28
FLT_EVAL 51
FP_ILOGB0 51
FP_ILOGBNAN 51
FP_INFINITE 51
FP_NAN 51
FP_NORMAL 51
FP_SUBNORMAL 51
FP_ZER0 51

G
get

the difference in seconds 78
the two-byte country code 77

getcountrycode() 77
getgmtoffset() 78
gettimezone() 78
global error code variable 43

H
hastimezone() 78
header files

assert.h 39
climits.h 28
complex.h 28
ctype.h 41
errno.h 43
fenv.h 28
inttypes.h 28
ioctl.h 45
iso646.h 47
limits.h 28
locale.h 49
math.h 51
namespace.h 28
PalmMath.h 55
paths.h 28
setjmp.h 28
signal.h 28
stdarg.h 61

stddef.h 63
stdint.h 28
stdio.h 65
stdlib.h 67
string.h 69
strings.h 73
termios.h 28
time.h 75, 77
uio.h 83
wchar.h 85

HUGE_VAL 51
HUGE_VALF 51
HUGE_VALL 51

I
identifiers 13
INFINITY 51
inplace_realloc() 68
inttypes.h 28
ioctl.h 45
iostream 25
iovec 83
ISO 646 47
iso646.h 47

K
keywords 14

L
lceilf() 57
lfloorf() 57
libc 28, 49
libm.a 53
libraries

cpp 27
eabi 27
pacc 27
STLport 27
support 27

limits.h 28
locale.h 49
localtime_tz() 79
long long 5

Palm OS Protein C/C++ Compiler Language & Library Reference 89

M
math constants 55
math.h 51
MATH_ERREXCEPT 51
math_errhandling 51
MATH_ERRNO 51
mktime_tz() 79

N
namespace.h 28
NAN 51
not 47
not_eq 47

O
operators 16
or 47
or_eq 47
output a diagnostic message 39

P
pacc library 27
palm_seconds_to_time_t() 80
PalmMath.h 55
paths.h 28
predefined constants 21
Preprocessor 11
preprocessor directives 20

R
readv() 83
resize the memory block inplace 68
restrictions

on C++ 5
on C99 5
on data types 6

S
separators 20
set

the system time 80
the system’s time zone 81

setjmp.h 28
settime() 80
settimezone() 81
signal.h 28
sincosf() 58
stdarg.h 61
stddef.h 63
stdint.h 28
stdio.h 65
stdlib.h 67
STLport 25
STLport library 27
string.h 69
strings.h 73
support library 27
system_real_time() 81
system_time() 81

T
technical requirements 4
termios.h 28
the number of seconds since

1/1/1904 80
1/1/1970 81

the value of
the real time clock 81
the run time clock 81

time.h 75, 77
time_t_to_palm_seconds() 81
tokens 13
tools documentation viii
TZNAME_MAX 77

U
uio.h 83

W
wchar.h 85
wchar_t 85
writev() 84

X
xor 47

90 Palm OS Protein C/C++ Compiler Language & Library Reference

xor_eq 47

	Palm�OS® Protein C/C++ Compiler Language & Library Reference
	Table of Contents
	About This Book
	How This Book Is Organized
	Palm OS Developer Suite Documentation
	Additional Resources

	C/C++ Compiler Language Reference
	Language Overview
	C Technical Requirements
	C++ Technical Requirements
	Limitations
	Restrictions on C99
	Restrictions on C++
	Restrictions on Data Types

	Language Elements
	Lexical Elements
	Character Set
	Comments
	Tokens
	Identifiers
	Keywords
	Constants
	Operators
	Separators

	Preprocessor Directives
	#pragma

	Predefined Constants

	C/C++ Compiler Library Reference
	STLport/iostream
	Palm OS-Specific Libraries
	The Palm OS Implementation of the Standard C Library (libc)

	Runtime Library Functions
	Supported Functions
	posix/ctype.h
	posix/math.h
	posix/stdio.h
	posix/stdlib.h
	posix/string.h
	posix/strings.h
	posix/time.h
	posix/sys/ioctl.h
	posix/sys/PalmMath.h
	posix/sys/time.h
	posix/sys/uio.h

	Unsupported Functions
	posix/ctype.h
	posix/inttypes.h
	posix/locale.h
	posix/math.h
	posix/signal.h
	posix/stdio.h
	posix/stdlib.h
	posix/string.h
	posix/strings.h
	posix/termios.h
	posix/time.h
	posix/wchar.h
	posix/machine/arm/param.h
	posix/sys/bswap.h
	posix/sys/socket.h
	posix/sys/stat.h
	posix/sys/time.h
	posix/sys/uio.h

	assert.h
	Functions and Macros
	assert

	ctype.h
	errno.h
	Global Variables
	errno Variable

	ioctl.h
	iso646.h
	Operators

	locale.h
	math.h
	PalmMath.h
	Constants
	Math Constants

	Functions and Macros
	lceilf
	lfloorf
	max_c
	min_c
	sincosf

	stdarg.h
	stddef.h
	stdio.h
	stdlib.h
	Functions and Macros
	inplace_realloc

	string.h
	strings.h
	time.h
	time.h
	Constants
	TZNAME_MAX

	Functions and Macros
	getcountrycode
	getgmtoffset
	gettimezone
	hastimezone
	localtime_tz
	mktime_tz
	palm_seconds_to_time_t
	settime
	settimezone
	system_real_time
	system_time
	time_t_to_palm_seconds

	uio.h
	Structures and Types
	iovec

	Functions and Macros
	readv
	writev

	wchar.h

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

