= GHRM'N@

Programmer’s Reference
for Garmin iIQue 3600
Handheld



® Copyright 2004 PalmSource and Garmin Ltd. or its subsidiaries. All Rights Reserved.
This documentation may be printed and copied solely for use in developing products for
the iQue 3600 handheld. In addition, two (2) copies of this documentation may be made
for archival and backup purposes. Except for the foregoing, no part of this documentation
may be reproduced or transmitted in any form or by any means or used to make any
derivative work (such as translation, transformation or adaptation) without express
written consent from Garmin Ltd.

Garmin Ltd. reserves the right to revise this documentation and to make changes in
content from time to time without obligation on the part of Garmin Ltd. to provide
notification of such revision or changes.

GARMIN LTD. AND ITS SUPPLIERS MAKE NO REPRESENTATIONS OR
WARRANTIES THAT THE DOCUMENTATION IS FREE OF ERRORS OR THAT
THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE
DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. GARMIN LTD. AND
ITS SUBSIDIARIES AND SUPPLIERS MAKE NO WARRANTIES, TERMS OR
CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF
LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND/OR SATISFACTORY QUALITY. TO THE FULL EXTENT
ALLOWED BY LAW, GARMIN LTD. ALSO EXCLUDES FOR ITSELF, ITS
SUBSIDIARIES, AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN
CONTRACT OR TORT (INCLUDING NEGLIGENCE), FOR DIRECT,
INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE
DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF
BUSINESS, LOSS OF INFORMATION OR DATA, OR OTHER FINANCIAL LOSS
ARISING OUT OF OR IN CONNECTION WITH THIS DOCUMENTATION, EVEN
IF GARMIN, LTD., ITS SUBSIDIARIES, OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm OS, the Palm logo, PalmSource, Graffiti 2, HotSync, Palm, Palm Powered, the
Palm Powered logo, the PalmSource logo, and the HotSync logo are trademarks of
PalmSource, Inc.

Garmin® is a registered trademark and iQue™ and Que™ are trademarks of Garmin Ltd.
or its subsidiaries and may not be used without the express permission of Garmin.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER
SOFTWARE AND DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT
TO THE LICENSE AGREEMENT ACCOMPANYING THE COMPACT DISC.

ii  Programmer’s Reference for Garmin iQue 3600 Handheld



Table of Contents

Overview

Purpose of This Document...........ccccceerveerieniiienienieenen.
Conventions Used in This Document ..............cccceeeeuneene.
Tools for Software Development............cccoeeveeiieniiennnnnn.
Garmin SDK .......coiiiiiecieeee e

Features

Feature Creator.....oooovviivieieeeeeeeeeeeeeeeeeeee et eeeeeens
Feature NUMDETS ....ooeeeeeeeeeeee e

GPS Library

Introduction to the GPS Library.........coceveriiniincnicnnne.
GPS Library Data Structures...........cceeeeevieerienveenieennenns
GPS Library Constants...........ccoceeveeeieneenieneeneeneneeneenne
GPS Library FUnctions...........ccceoeveveieenieeiieenieeieeieeenens

Pen Input Manager

Introduction to the Pen Input Manager ...........ccccccevuenneee.
Pen Input Manager Data Structures ..........cccccceeeeveeennennns
Pen Input Manager Constants ............cceceeeveercveeneenneennee.
Pen Input Manager Functions ...........ccceeecveeevveeniieennnens

Additional Hardware Buttons

Introduction to the Additional Buttons ..................cceuu..e.
Button Activity Reporting..........ccccoeeveeviienieniieeniieeieenen.
Button Constants.........cooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenens
Responding to the Additional Buttons.............ccccceuenneene.

Power Manager Library

Introduction to the Power Manager Library ....................
Power Manager Library Functions ..........ccccevceeveeiennnene

Que API Library

Introduction to the Que API Library.........cccccvveveuveennnenns
Que API Library Data Structures..........cccceevveecveenivennnnnne
Que API Library Constants..........ccceeceeeeeveeeceeenieeesinneenns
Que API Library FUnCtions...........ccceeveeeviienieecieenieenenns

Programmer’s Reference for Garmin iQue 3600 Handheld






Overview

Purpose of This Document

Programmer's Reference for Garmin iQue 3600 Handheld is a part of
the Garmin Software Development Kit. This document details the
information necessary for software development for the Garmin iQue™
3600 handheld, software Release 3 or later.

Conventions Used in This Document

Throughout this document, af i xed W dt h font is used to signify
code elements such as files, functions, structures, fields, and bitfields.

Tools for Software Development

CodeWarrior for Palm OS® Platform

This contains the Integrated Development Environment (IDE) and all
the tools required to develop Palm OS® applications. The development
of the applications for the iQue 3600 was performed using
CodeWarrior for Palm OS® Platform version 8.3. For more
information, visit the Metrowerks web site at
http://www.metrowerks.com.

Palm OS® 5.0 SDK

For basic development information for Palm OS® applications,
including the Palm OS® 5.0 SDK, visit http://www.palmos.com.

Palm OS®5.2 Simulator

This simulates a Palm OS® 5.2 device. It allows for the testing and
debugging of applications. This may be found at
http://www.palmos.com/dev/tools/simulator/index.html. This SDK is
compatible only with the Palm OS 5.2 Simulator.

Programmer’s Reference for Garmin iQue 3600 Handheld 1


http://www.metrowerks.com/
http://www.palmos.com/

Overview
Garmin SDK

Garmin SDK

Components

GarminSimulator.zip includes new PalmSim.exe and DAL.dII files, as
well as other DLL files to implement the Garmin extensions. It also
includes in the AutoLoad folder the necessary PRCs for the Garmin
extensions, as well as prebuilt PRCs for the Garmin examples
GPSInfo.prc and PINMgrExample.prc.

GarminExamples.zip contains the source code for the Garmin
examples. It also includes the prebuilt PRC for the third Garmin
example, PwrMgrExample, since this application cannot be used in the
simulator.

GarminSupport.zip contains the Garmin-specific include files.

Unpacking the SDK

1.

If you have not done so already, get the Palm OS® 5.2 debug
simulator (Palm_OS 52 Simulator Dbg.zip) from
http://www.palmos.com/dev/tools/simulator/index.html, and unzip
that onto your hard drive.

Copy the Palm OS® 5.2 Simulator "Debug" folder and all of its
contents to a new folder named "GarminDebug".

Extract GarminSimulator.zip into this new "GarminDebug" folder.

Extract GarminExamples.zip into a convenient folder, such as the
"(CodeWarrior Examples)" folder of your CodeWarrior
installation.

Extract the GarminSupport.zip file into a convenient folder, such
as the "Other SDKs" folder of your CodeWarrior installation. This
will create a "Garmin" folder under the folder it is extracted into.
Remember to add this folder to the access paths of any projects
that need to use the Garmin-specific include files.

The first time you run the simulator, confirm that the RAM size
Memory Setting is at least 32 MB and that the Dynamic Heap Size
Memory Setting is at least 2048 KB.

2 Programmer’s Reference for Garmin iQue 3600 Handheld


http://www.palmos.com/dev/tools/simulator/index.html

2

Features

The Ft r Get () API may be used to determine if a feature is present in
the Garmin handheld device. For more information on the Ft r Get ()
API, see the Palm OS® documentation.

This chapter describes the various features available in the Garmin
iQue 3600 handheld, which are defined in the header file Gar mi n. h.
It discusses the following topics:

¢ Feature Creator
¢ Feature Numbers

Feature Creator

To access the features unique to the Garmin Handheld, use
gar m nFtr Creat or asthecreator argument for Ft r Get () .

Feature Numbers

For the f eat ur eNumargument, specify a value described below.

garminFtrNumPenlInputServices
Call Ft r Get () with this value to determine if the Pen Input Manager
API is present.

err = FtrGet( garm nFtrCreator,
gar m nFt r NumPenl nput Ser vi ces, &PenDat a

)
Ifft r Er r NoSuchFeat ur e is returned, the Pen Input Manager API
is not present.

garminFtrNumExtraKeys

Call Ft r Get () with this value to determine if the additional hardware
buttons are present.

err = FtrGet( garm nFtrCreator,
gar mi nFt r Nunmext r akeys, &KeyData );

Programmer’s Reference for Garmin iQue 3600 Handheld 3



Features
Feature Numbers

Iff t r Er r NoSuchFeat ur e is returned, the additional hardware
buttons are not present.

garminFtrNumIntegratedGPS

Call Ft r Get () with this value to determine if an integrated GPS is
present in the handheld.

err = FtrGet( garm nFtrCreator,
gar mi nFt r Num nt egr at edGPS, &GPSdata ) ;

Iff t r Err NoSuchFeat ur e is returned, an integrated GPS is not
present in the handheld.

garminFtrNumMedia

Call Ft r Get () with this value to determine the media features
present in the handheld.

err = FtrGet( garm nFtrCreator,
gar m nFt r Numvedi a, &Medi aData );

Ifft r Err NoSuchFeat ur e is returned, there are no media features
present in the handheld. Otherwise, the third parameter will contain a
set of bits, which are a mask for the different media features that are
present, as specified below.

Media Mask Description

gar m nMedi al nt egr at edM cr ophone An integrated microphone is present in
the handheld

gar mi nMedi aWAVQut put WAV output is supported by the
handheld

gar mi nMedi aMP3Qut put MP3 output is supported by the handheld

4 Programmer’s Reference for Garmin iQue 3600 Handheld



GPS Library

To begin learning more about GPS, visit
http://www.garmin.com/aboutGPS.

This chapter describes the GPS Library declared in the header file
GPSLi b68K. h. It discusses the following topics:

* Introduction to the GPS Library
* GPS Library Data Structures

* GPS Library Constants

* GPS Library Functions

Introduction to the GPS Library

Using the GPS Library

The GPS Library provides access to the data from the internal GPS. To
get access to the GPS Library, #i ncl ude GPSLi b68K. h in your
application.

Before the GPS Library can be used, it must be found or loaded, using
the standard Palm OS® paradigm:

/282
Find the GPS library. If not found, load it.
___________________________________________ * |
error = SysLi bFi nd( gpsLi bNane, &gGPSLi bRef);
if (error !'= errNone)
{
error = SyslLi bLoad
(
gpsLi bType,
gpsLi bCreat or,
&gGPSLi bRef
) .

ErrFatal Di splaylf( (error != errNone),
"can't load GPS Library" );
}
The GPS Library normally computes new data once a second. When
data is computed, the GPS Library broadcasts the notification

Programmer’s Reference for Garmin iQue 3600 Handheld 5


http://www.garmin.com/aboutGPS

GPS Library

GPS Library Data Structures

sysNot i f yGPSDat aEvent . Once your application has registered
for this notification, it can call the GPSGet functions when this
notification is received. The GPSGet functions can also be used
strictly on a polling or as needed basis.

Once your application is done using the GPS Library (normally when
the application stops), you should close and unload the library using the
standard Palm OS® paradigm:

___________________________________________ * |
err = GPSC ose( gGPSLi bRef );
| ® o o e e e e e eeeeieao -
Unl oad the GPS Library.
___________________________________________ * |
if ( err = gpsErrStill Open )

{

SysLi bRemove( gGPSLi bRef );

}

GPS Data and the Palm OS® Simulator

GPS data may be received when using the Palm OS® Simulator by
following these steps:

1. Connect a recent model Garmin GPS to a PC serial port. The Serial
Data Format on the Garmin GPS unit must be set to “Garmin”,
which is the default setting.

2. Right-click in the Simulator and select
Settings|Communication|Communication ports. Select the Cradle
Communication Port and bind it to the COM port to which the
Garmin GPS is connected.

3. Turn on the Garmin GPS and put the unit into Simulator mode.
With the unit in Simulator mode, it is possible for you to adjust
position, velocity, altitude, and track on the unit and have those
changes reflected in the Palm OS® Simulator. If satellite signals are
available at your PC, GPS information will also be present in the
Palm OS® Simulator when the unit is operated normally.

GPS Library Data Structures

GPSFixT8

6 Programmer’s Reference for Garmin iQue 3600 Handheld



GPS Library
GPS Library Data Structures

GPSFi x T8 defines the quality of the position computation. Based on
the number of satellites being received and the availability of
differential correction (such as WAAS), the position may be known in
two dimensions (latititude and longitude) or three dimensions (latitude,
longitude, and altitude).

typedef Int8 GPSFi xT8; enum
{

gpsFi xUnusable = 0,
gpsFi xlI nval i d =1,
gpsFi x2D = 2,
gpsFi x3D = 3,
gpsFi x2DDi f f = 4,
gpsFi x3DDi f f =5
b
Value Descriptions
gpsFi xUnusabl e GPS failed integrity check.
gpsFi xI nval i d GPS is invalid or unavailable.
gpsFi x2D Two dimensional position.
gpsFi x3D Three dimensional position.
gpsFi x2DDi f f Two dimensional differential
position.
gpsFi x3DDi f f Three dimensional differential
position.

GPSModeT8

GPSMbde T8 defines the modes for the GPS.

t ypedef I nt8 GPSMbdeT8; enum
{
gpsMdeO f
gpsMdeNor nal
gpsMdeBat Saver
gpsModeSi m
gpsMdeExt er nal
3

Value Descriptions
gpsMdeO f GPS is off.

TRNTRRTRRTINT
AWNPFRO

gpsMdeNor nal Continuous satellite tracking.

Programmer’s Reference for Garmin iQue 3600 Handheld 7



GPS Library

GPS Library Data Structures

gpsMdeBat Saver Periodic satellite tracking to
conserve battery power.

gpsMobdeSi m Simulated GPS information.

gpsMdeExt er nal External source of GPS
information.

GPSPositionDataType

GPSPosi ti onDat aType defines the position data returned by the
GPS. The GPSPosi t i onDat aType uses integers to indicate latitude
and longitude in semicircles, where 23! semicircles are equal to 180
degrees. North latitudes and East longitudes are indicated with positive
numbers; South latitudes and West longitudes are indicated with
negative numbers. The following formulas show how to convert
between degrees and semicircles:

degrees = semicircles * ( 180 /23!)
semicircles = degrees * ( 23!/ 180)

t ypedef struct

{

| nt 32 | at ;

| nt 32 | on;

fl oat al t MBL;
fl oat al t WS84

} GPSPosi ti onDat aType;

Field Descriptions

| at Latitude component of the position in
semicircles.

[ on Longitude component of the position in
semicircles.

al t MSL Altitude above mean sea level component of
the position in meters.

al t WS84 Altitude above WGS84 ellipsoid component

of the position in meters.

GPSPVTDataType

GPSPVTDataType combines the GPS data types into one structure.

t ypedef struct

{
GPSSt at usDat aType st at us;

8 Programmer’s Reference for Garmin iQue 3600 Handheld



GPS Library
GPS Library Data Structures

GPSPosi t i onDat aType position;
GPSVel oci t yDat aType vel ocity;
GPSTi neDat aType tinme;

} GPSPVTDat aType;

Field Descriptions

st at us GPS status.
position GPS position.
vel ocity GPS velocity.
time GPS time.
GPSSatDataType

GPSSat Dat aType defines the data for one satellite.
t ypedef struct

{

Ul nt8 svi d;

U nt8 st at us;

I nt 16 snr;

fl oat azi nmut h;
fl oat el evati on;

} GPSSat Dat aType;

Field Descriptions

svid The space vehicle identifier for the satellite.

stat us The status bitfield the for satellite (see
constants later).

snr The satellite signal to noise ratio * 100 (dB
Hz).

azi mut h The satellite azimuth (radians).

el evati on The satellite elevation (radians).

GPSStatusDataType

GPSSt at usDat aType defines the status data reported by the GPS.

t ypedef struct
{
GPSMbdeT8 nmode;
GPSFi xT8 fix;
Ul nt 16 filler2;
f | oat epe;

Programmer’s Reference for Garmin iQue 3600 Handheld 9



GPS Library

GPS Library Data Structures

fl oat eph;
f | oat epv;
} GPSSt at usDat aType;

Field Descriptions

node GPS mode.

fix GPS fix.

filler2 Alignment padding.

epe The one-sigma estimated position error in
meters.

eph The one-sigma horizontal only estimated

position error in meters.

epv The one-sigma vertical only estimated
position error in meters.

GPSTimeDataType
GPSTi meDat aType defines the time data returned by the GPS.
t ypedef struct

{
Ul nt 32 seconds;
Ul nt 32 fracSeconds;

} GPSTi neDat aType;
Field Descriptions
seconds Seconds since midnight UTC.

fracSeconds To determine the fractional seconds, divide
the value in this field by 2%

GPSVelocityDataType

GPSVel oci t yDat aType defines the velocity data returned by the
GPS. The individual East, North, and up components completely
describe the velocity. The track and speed fields are provided for
convenient access to the most commonly used application of GPS
velocity.

t ypedef struct

{

fl oat east ;
fl oat nort h;
f | oat up;

10 Programmer’s Reference for Garmin iQue 3600 Handheld



GPS Library

GPS Library Constants
fl oat t rack;
f | oat speed;
} GPSVel oci t yDat aType;
Field Descriptions
east The East component of the velocity in
meters per second.
north The North component of the velocity in
meters per second.
up The upwards component of the velocity in
meters per second.
track The horizontal vector of the velocity in
radians.
speed The horizontal speed in meters per second.
GPS Library Constants
GPS Library Error Codes
gpsErr None No error.
gpsErr Not Open The GPS Library is not open.
gpsErrStill Open The GPS Library is still open.
gpsErr Menory Not enough memory.
gpsErr NoDat a No GPS data available.

Extended Notification Information

The GPS Library broadcasts a sysNot i f yGPSDat aEvent when the
GPS information changes. The not i f yDet ai | SP of this notification
is a Ul nt 32 (not a pointer to a Ul nt 32) which contains one of the
following extended notification information values indicating the
reason for the notification.

gpsLocat i onChange The GPS position has changed.
gps St at usChange The GPS status has changed.
gpsLost Fi x The quality of the GPS position

computation has become less than
two dimensional.

Programmer’s Reference for Garmin iQue 3600 Handheld 11



GPS Library

GPS Library Functions
gpsSat Dat aChange The GPS satellite data has
changed.
gpsMbdeChange The GPS mode has changed.

Satellite Status Bitfield Values
These define the bits in the status field of GPSSat Dat aType.

gpsSat EphMask Ephemeris: 0 = no ephemeris, 1 =
has ephemeris.

gpsSat Di f Mask Differential: 0 = no differential
correction, 1 = differential
correction.

gpsSat UsedMask Used in solution: 0 = no, 1 = yes.

gpsSat Ri si nghvask Satellite rising: 0 = no, 1 = yes.

GPS Library Functions

Purpose
Prototype
Parameters

Result

Comments

GPSClose
Close the GPS Library.

Err GPSC ose( const U ntl1l6 refNum)

-> ref Num Reference number for the library.

gpsErr None No error.

gpsErrStill Open Couldn't be closed because the
library is still in use by other
applications.

Closes the GPS Library and disposes of the global data memory if
required. Called by any application or library that's been using the GPS
Library and is now finished with it.

This should not be called it GPSOpen failed.

IfgpsErr Stil | Open is returned, the calling app should not call
SysLi bRenove.

GPSGetLibAPIVersion

12 Programmer’s Reference for Garmin iQue 3600 Handheld



GPS Library
GPS Library Functions

Purpose

Prototype

Parameters
Result

Comments

Purpose

Prototype

Parameters
Result

Comments

Purpose

Prototype

Parameters

Result

Get the GPS Library API version.

U nt 16 GPSCet Li bAPI Ver si on
( const U ntl6 refNum)

-> ref Num Reference number for the library.

The API version of the library.

Can be called without opening the GPS Library first.

GPSGetMaxSatellites

Get the maximum number of satellites.

U nt8 GPSCet MaxSatel lites
( const U ntl6 refNum)

-> ref Num Reference number for the library.

Maximum number of satellites that are currently supported.

The value returned by this routine should be used in the dynamic
allocation of the array of satellites (GPSSat Dat aType).

GPSGetPosition

Get current position data.

Err GPSGet Position( const U ntl1l6 ref Num
GPSPosi ti onDat aType *position )

-> ref Num Reference number for the library.

<- position Contains the latest position from the

GPS.

gpsErr None No error.
gpsErr Not Open

gpsErr NoDat a

The GPS Library is not open.

No data has been received for a
period of time.

Programmer’s Reference for Garmin iQue 3600 Handheld 13



GPS Library

GPS Library Functions

Comments

Purpose

Prototype

Parameters

Result

Comments

Purpose

Prototype

Parameters

Result

If the return value is not gpsSEr r None, the data should be considered
invalid.

GPSGetPVT

Get current position, velocity, and time data.

Err GPSGet PVT( const U nt16 refNum
GPSPVTDat aType *pvt )

-> ref Num Reference number for the library.

<- pvt Contains the latest position, velocity,
and time data from the GPS.

gpsErr None No error.
gpsEr r Not Open The GPS Library is not open.
gpsErr NoDat a No data has been received for a

period of time.

If the return value is not gpsEr r None, the data should be considered
invalid.

If pvt - >st at us. fi x is equal to gpsFi xUnusabl e or
gpsFi xI nval i d, the rest of the data in the structure should be
considered invalid.

GPSGetSatellites

Get current satellite data.

Err GPSGet Satellites( const U ntl16 refNum
GPSSat Dat aType *sat )

-> ref Num Reference number for the library.

<- sat Contains latest satellite information
from the GPS. See the comments
below.

gpsErr None No error.

gpsErr Not Open The GPS Library is not open.

14 Programmer’s Reference for Garmin iQue 3600 Handheld



GPS Library
GPS Library Functions

Comments

Purpose

Prototype

Parameters

Result

Comments

Purpose

Prototype

Parameters

Result

gpsErr NoDat a No data has been received for a
period of time.

If the return value is not gpsEr r None, the data should be considered
invalid.

The sat parameter must point to enough memory to hold the
maximum number of satellites worth of satellite data.

GPSGetStatus

Get current status data.

Err GPSCet Status( const U ntl1l6 ref Num
GPSSt at usDat aType *status )

-> ref Num Reference number for the library.

<- status Contains the latest status from the
GPS.

gpsErr None No error.

gpsEr r Not Open The GPS Library is not open.

gpsErr NoDat a No data has been received for a

period of time.

If the return value is not gpsSEr r None, the data should be considered
invalid.

GPSGetTime

Get current time data.

Err GPSGet Ti me( const U nt16 ref Num
GPSTi neDat aType *tinme )

-> ref Num Reference number for the library.

<- time Contains latest time data from the
GPS.

gpsErr None No error.

gpsErr Not Open The GPS Library is not open.

Programmer’s Reference for Garmin iQue 3600 Handheld 15



GPS Library

GPS Library Functions

Comments

Purpose

Prototype

Parameters

Result

Comments

Purpose
Prototype
Parameters

Result

Comments

gpsErr NoDat a No data has been received for a

period of time.

If the return value is not gpsEr r None, the data should be considered
invalid.

GPSGetVelocity

Get current velocity data.

Err GPSCet Vel ocity( const U nt16 refNum
GPSVel oci tyDat aType *velocity )

-> ref Num Reference number for the library.

<- velocity Contains the latest velocity data from

the GPS.

gpsErr None No error.
gpsEr r Not Open

gpsErr NoDat a

The GPS Library is not open.
No data has been received for a

period of time.

If the return value is not gpSEr r None, the data should be considered
invalid.

GPSOpen
Opens the GPS Library.
Err GPSOpen( const U nt16 refNum)

-> ref Num Reference number for the library.

gpsErr None No error.

gpsErr Menory Not enough memory to open the

library.

Opens the GPS Library and prepares it for use. Called by any
application or library that wants to use the services that the library
provides.

16 Programmer’s Reference for Garmin iQue 3600 Handheld



GPS Library

GPSOpen must be called before calling any other GPS Library
functions, with the exception of GPSGet Li bAPI Ver si on.

A

Pen Input Manager

This chapter describes the Pen Input Manager API declared in the
header file Penl nput Mgr . h. It discusses the following topics:

* Introduction to the Pen Input Manager
* Pen Input Manager Data Structures

* Pen Input Manager Constants

* Pen Input Manager Functions.

Introduction to the Pen Input Manager

Pen Input Manager

The Pen Input Manager controls the area of the screen that is
traditionally silkscreened onto the device. On the iQue 3600, this area
is controlled by software, and it is sometimes referred to as "soft
graffiti" or "collapsible graffiti". This area is comprised of two parts.
The upper part is the dynamic input area, or graffiti area; the lower part
is the status bar. The dynamic input area can be open (shown) or closed
(hidden), while the status bar is always shown.

There is a button in the status bar that allows the user to show or hide
the dynamic input area. This button is called the "input trigger". It
shows a down arrow if the dynamic input area is open, or an up arrow
if the dynamic input area is closed.

The input trigger can be enabled or disabled. If the input trigger is
enabled, the user can control the state of the dynamic input area; if the
input trigger is disabled, the input trigger is grayed out and the user
cannot control the state of the dynamic input area.

Dynamic Input Area Concepts

Normally, users are the ones who change the dynamic input area state
by tapping the input trigger button in the status bar, but applications
also have the ability to set the dynamic input area state and to disable
the trigger that allows the user to change the state.

Programmer’s Reference for Garmin iQue 3600 Handheld 17



Pen Input Manager
Introduction to the Pen Input Manager

There are two dynamic input area states, open and closed. The function
Pl NSet | nput Ar eaSt at e() changes the state of the dynamic input
area. Applications may query the dynamic input area state using

Pl NCGet | nput AreaSt ate() .

There are two input trigger states, enabled and disabled. The function
Pl NSet | nput Tri gger St at e() changes the state of the input
trigger. Applications may query the input trigger state using

Pl NCGet | nput Tri gger State() .

There are two dynamic input area policies. The default is to have the
dynamic input area open and the input trigger disabled. The second
policy allows the application and the user to control the dynamic input
area state and the input trigger state. Applications should set the form’s
dynamic input area policy by calling Fr mSet DI APol i cyAttr () in
the f r mLoadEvent . Each form in an application will use the default
policy if Fr nSet DI APol i cyAttr () is not called by the application.

Applications should register what size they want to be in the
f rmLoadEvent by calling W nSet Constrai nt sSi ze() .

Pen Input Manager Feature

The Pen Input Manager registers its API version with the feature
manager. Use the following feature manager call to determine the Pen
Input Manager API version:

err = FtrGet( pinCreator, pinFtrAPI Version,
&API Ver si on );

The current Pen Input Manager API version is 1.0, and is fully
compatible with the PalmSource™ Pen Input Manager API version 1.0.

If Ft r Get returns ft r Er r NoSuchFeat ur e, then the Pen Input
Manager is not present and should not be used.

Using the Pen Input Manager

To get access to the Pen Input Manager, #i ncl ude

Penl nput Myr . h in your 68K application. Since the Pen Input
Manager is an extension and not a library, it is available without being
found or loaded.

To enable the input trigger and therefore give users the ability to close
the dynamic input area, you must make the following calls in the
frmLoadEvent :

Set the constraints.

18 Programmer’s Reference for Garmin iQue 3600 Handheld



Pen Input Manager
Pen Input Manager Data Structures

W nSet Constrai ntsSi ze( W nGet Di spl ayW ndow(),
160, 160, pinMaxConstraintSize, 160, 160,

160 );
| e e e e e e e e e e e meeeee—o-
Set the dynam c input area policy.
___________________________________________ * [
FrnSet DI APol i cyAttr( FrmGet ActiveForm(),

Fr DI APol i cyCust om ) ;
| o e e e e e e e e e e e meeeeeeo-
Enabl e the input trigger.
___________________________________________ * [

Pl NSet | nput Tri gger St at e
( pinlnputTriggerEnabl ed );

Determining When the Dynamic Input Area
State Changes

Whenever the state of the dynamic input area changes, the Pen Input
Manager broadcasts a SsysNot i f yDi spl ayResi zedEvent .
Register for this notification if your application needs to know when
the dynamic input area changes. If you register, be sure to unregister
before your application exits. If you fail to unregister, "the system will
crash when the notification is broadcast" (according to the Palm OS®
Programmer’s Companion).

Determining the Size of the Application
Display Area

W nGet Di spl ayExt ent () returns the current size of the display
window. Typically, at initialization and upon receipt of a

sysNot i f yDi spl ayResi zedEvent notification, your application

will get the current size of the display window and adjust the locations
of the various user interface items as needed.

The supplied PINMgrExample application is provided to demonstrate
the usage of various aspects of the Pen Input Manager.

Pen Input Manager Data Structures

FrmDIAPolicyT16

Fr mDI APol i cyT16 specifies the dynamic input area policy type.
typedef U ntl16 FrnDI APolicyT16; enum

Programmer’s Reference for Garmin iQue 3600 Handheld 19



Pen Input Manager
Pen Input Manager Data Structures

{
frmDI APol i cySt ayQpen,

frnDI APol i cyCust om
b

Value Descriptions

frDI APol i cySt ayQOpen The dynamic input area stays

open and the input trigger is
disabled. This is the default.

frmDI APol i cyCust om The dynamic input area state and
input trigger state may be
controlled by the application and
the user.

PininputAreaStateT16

Pi nl nput Ar eaSt at eT16 specifies the dynamic input area state.

typedef U nt16 PinlnputAreaStateTl6; enum
{
pi nl nput Ar eaQpen,
pi nl nput Ar ead osed,
pi nl nput Ar eaNone

};

Value Descriptions

pi nl nput Ar eaOpen The dynamic input area is
displayed. This is the default.

pi nl nput Ar eaC osed The dynamic input area is not
being displayed.

pi nl nput Ar eaNone There is no dynamic input area.

PinlnputTriggerStateT16

Pi nl nput Tri gger St at eT16 specifies the input trigger state.

typedef U ntl16 PinlnputTriggerStateTl6;, enum

{
pi nl nput Tri gger Enabl ed,

pi nl nput Tri gger Di sabl ed,
pi nl nput Tri gger None

};

Value Descriptions

20 Programmer’s Reference for Garmin iQue 3600 Handheld



Pen Input Manager
Pen Input Manager Constants

pi nl nput Tri gger Enabl ed The status bar icon is enabled,
meaning that the user is allowed
to open and close the dynamic
input area.

pi nl nput Tri gger Di sabl ed The status bar icon is disabled,
meaning that the user is not
allowed to open and close the
dynamic input area. This is the
default.

pi nl nput Tri gger None There is no dynamic input area.

Pen Input Manager Constants

pi nMaxConstrai nt Si ze Maximum size for setting
constraint sizes.

pi nErrl nval i dPar am An invalid state parameter was
entered.

Pen Input Manager Functions

Purpose

Prototype

Parameters
Result

Comments

Purpose

Prototype

FrmGetDIAPolicyAttr

Get a form’s dynamic input area policy.

FrnDI APol i cyT16 FrntGet DI APol i cyAttr
( FormPtr fornP )

-> fornP Pointer to a form.
The form’s dynamic input area policy.

This routine is used to determine a form’s dynamic input area policy.
The default dynamic input area policy is f r mDlI APol i cy St ayQpen.

FrmSetDIAPolicyAttr

Set a form’s dynamic input area policy.

Err FrntSet Dl APolicyAttr( FonrPtr fornP,
const FrnDl APol i cyT16 di aPolicy )

Programmer’s Reference for Garmin iQue 3600 Handheld 21



Pen Input Manager
Pen Input Manager Functions

Parameters

Result

Comments

Purpose
Prototype
Parameters
Result

Comments

Purpose

Prototype

Parameters
Result

Comments

Purpose

-> fornP Pointer to a form.
-> diaPolicy The policy to use for this form.
err None No error.

pi nErr 1 nval i dPar am Parameter is not valid.

This routine is used to set a form’s dynamic input area policy, which
will be used for opening and closing the dynamic input area.
Applications should call this function in response to the

frmLoadEvent . If an application does not call this function, the
policy for that application will be f r DI APol i cy St ayOpen.

PINGetInputAreaState

Get the current state of the dynamic input area.

Pi nl nput Ar eaSt at eT16 PI NGet | nput Ar eaSt at e(voi d)
None

Current state of the dynamic input area.

Call this routine to determine whether the dynamic input area is open or
closed.

PINGetInputTriggerState

Get the current state of the input trigger.

Pi nl nput Tri gger St at eT16
Pl NGet | nput Tri gger State( void )

None
Current state of the input trigger.

Call this routine to determine if the input trigger is enabled or disabled.

PINSetIinputAreaState

Set the state of the dynamic input area.

22 Programmer’s Reference for Garmin iQue 3600 Handheld



Pen Input Manager
Pen Input Manager Functions

Prototype

Parameters

Result

Comments

Purpose

Prototype

Parameters

Result

Comments

Purpose

Prototype

Err PI NSet | nput AreaSt at e
( const PinlnputTriggerStateTl6 state )

-> state The desired state of the dynamic
input area.

err None No error .

pi nErr 1 nval i dPar am Parameter is not valid .

This routine allows the application to set the state of the dynamic input
area. Unless the appropriate constraints have been registered and the
dynamic input area policy set to custom, the only state allowed is open.

PINSetInputTriggerState

Set the state of the input trigger.

Err PINSet | nput Trigger State
( const PinlnputTriggerStateTl6 state )

-> state The desired state of the input trigger.
err None No error.
pi nErrl nval i dPar am Parameter is not valid.

This routine enables or disables the input trigger. Unless the
appropriate constraints have been registered and the dynamic input area
policy set to custom, the only state allowed is disabled.

Normally, the trigger should remain enabled, allowing the user the
choice of displaying the dynamic input area or not. In certain
circumstances, an application might want to prevent the display of the
dynamic input area or ensure the display of the dynamic input area. If
the application disables the trigger, it should enable it in response to the
appSt opEvent.

WinSetConstraintSize
Register an application’s size constraints.

Err W nSet ConstraintsSi ze( WnHandl e wi nHandl e,
const Coord m nHei ght, const Coord prefHeight,
const Coord maxHei ght, const Coord m nW dth,
const Coord prefWdth, const Coord maxWdth )

Programmer’s Reference for Garmin iQue 3600 Handheld 23



Pen Input Manager
Pen Input Manager Functions

Parameters -> wi nHandl e

-> m nHei ght

-> pref Hei ght

-> maxHei ght

-> mnWdth

-> prefWdth
-> maxWdth

Result errNone

Handle to a window.

The minimum height to which this
window can be sized.

The preferred height for this
window.

The maximum height for this
window.

The minimum width for this
window.

The preferred width for this window.
The maximum width for this

window.

No error.

Comments The values are specified using the standard coordinate system, which
refers to the original screen size of 160 X 160.

Currently only the maxHei ght parameter is used. If your application
desires to allow the dynamic input area to be closed, specify the
constant pi nMaxConst r ai nt Si ze for this parameter.

24 Programmer’s Reference for Garmin iQue 3600 Handheld



Additional
Hardware Buttons

This chapter describes the additional hardware buttons on the Garmin
1Que 3600 Handheld. It discusses the following topics:

* Introduction to the Additional Buttons
* Button Activity Reporting

* Button Constants

* Responding to the Additional Buttons

Introduction to the Additional Buttons

Additional Buttons

To help provide support for one-hand applications, additional hardware
buttons have been added to the side of the Garmin iQue3600.

The additional Garmin buttons are:
- a Thumbwheel, which can be pressed up, down, or in;
- an Escape button;
- a Record button.

To access these additional hardware buttons, #i ncl ude
Gar m nChar s. h in your application.

Garmin Buttons and the Palm OS® Simulator

The Garmin buttons have been mapped to keys in the supplied Palm
OS® Simulator as follows:

Thumb Wheel Up: F6
Thumb Wheel Down: F8
Thumb Wheel In: F7
Escape Button: F9
Record Button: F11

The Escape and Record button exhibit the "momentarily pressed" and
"pressed and held" behavior described below.

Programmer’s Reference for Garmin iQue 3600 Handheld 25



Additional Hardware Buttons
Button Activity Reporting

Button Activity Reporting

Button activity is reported by keyDownEvent s. The Escape and
Record buttons generate different data depending on whether they are
momentarily pressed or pressed and held. If they are momentarily
pressed, the keyDownEvent is sent when they are released. If they
are pressed and held, the keyDownEvent is sent after they have been
held for a period of time, even if the button has not been released.

The Garmin virtual character codes are sent in the key Code field of
the keyDownEvent data. The keyDownEvent s also provide values
in the chr field, to allow unmodified applications to respond to the
additional buttons.

The Thumbwheel can also be held in. This action is dedicated to
marking a waypoint at the current GPS position, and is not accessible to
third-party developers.

Button Constants

Button

The values sent in the keyCode and chr fields are defined as follows:
keyCode chr

Thumbwheel up

vchr Gar m nThunbWheel Up  vchr PageUp

Thumbwheel down vchr Gar m nThunbWheel Down vchr PageDown

Thumbwheel in
Escape

Escape held
Record

Record held

vchr Gar m nThunbWheel In chrCarri ageReturn

vchr Gar m nEscape vchr Gar m nEscape
vchr Gar m nEscapeHel d vchr Gar mi nEscapeHel d
vchr Gar mi nRecord vchr Gar m nRecor d
vchr Gar m nRecor dHel d vchr Gar m nRecor dHel d

The values returned by KeyCur r ent St at e() for Garmin keys are
as follows:

Button Value

Thumbwheel up keyBi t Gar m nThunbWeel Up
Thumbwheel down keyBi t Gar m nThunbWheel Down
Thumbwheel in keyBi t Gar m nThunbWeel I n
Escape keyBi t Gar m nEscape

Record keyBi t Gar m nRecord

Responding to the Additional Buttons

26 Programmer’s Reference for Garmin iQue 3600 Handheld



Additional Hardware Buttons
Responding to the Additional Buttons

Typically your application will respond to Garmin buttons by checking
for a Garmin key DownEvent before dispatching the event to any
other handlers.

do
{
| ® o o e e e e eeeeeo o
CGet an event.
_______________________________________ * |
Evt GCet Event ( &event, evt Wit Forever);
X o o e e e e e e e eeeeaoo-
Send to each handler in order, if not
al ready used.
_______________________________________ * |
if (! Garm nKeyHandl eEvent ( &event ) )
{
if (! SysHandl eEvent( &event ) )
{
if (! MenuHandl eEvent( 0, &event,
&error ) )
{
if (! AppHandl eEvent( &event ) )
{
Fr nDi spat chEvent ( &event );
}
}

}

} while ( event.eType != appStopEvent );

You should not wait to handle the Garmin button event in
AppHandl eEvent , since the event contains values in the chr field
and will likely be handled by the system or menu event handler.

The macro Gar mi nKeyl sGar m n() in Gar mi nChar s. h can be
used to detect if the keyDownEvent is one of the Garmin keys. If you
process the event you should not dispatch it to the other event handlers,
since the event contains values in the chr field and will likely also be
handled by the system or menu event handler.

Programmer’s Reference for Garmin iQue 3600 Handheld 27






Power Manager
Library

This chapter describes the Power Manager Library declared in the
header file Pwr Mgr Li b68K. h. It discusses the following topics:

* Introduction to the Power Manager Library
* Power Manager Library Functions

Introduction to the Power Manager Library

Low Power Mode

When the iQue 3600 enters low power mode, the display and backlight
are turned off, while the processor, GPS, and audio continue to operate
normally. Low power mode can be used to extend the battery life while
continuing to allow the handheld to execute applications, such as an
audio player. If any application has enabled low power mode, when the
auto-off time has expired the iQue 3600 will enter low power mode
instead of powering off. Low power mode is indicated by the LED
blinking briefly approximately every 10 seconds. Note that low power
mode uses substantially more battery power than allowing the handheld
to power off.

If an application desires to have the iQue 3600 enter low power mode
when the auto-off time has expired, the application should enable low
power mode. Low power mode will stay enabled until your application
disables it; therefore it is extremely important that your application
disables low power mode when it no longer needs to be enabled. Note
that if your application disables low power mode it does not guarantee
the handheld will power off, as another application could also have low
power mode enabled; however if your application enables low power
mode, it does guarantee that the handheld will enter low power mode
and will not power off.

Using the Power Manager Library

Programmer’s Reference for Garmin iQue 3600 Handheld 29



Power Manager Library
Power Manager Library Functions

The Power Manager Library provides access to this power saving
functionality in the iQue 3600. To get access to the Power Manager
Library, #i ncl ude Pw Mgr Li b68K. h in your application.

Before the Power Manager Library can be used, it must be found or
loaded, using the standard Palm OS® paradigm:

Find the Power Manager library. If not found,
load it.

error = SysLi bFi nd( kPw MgrLi bNane,
&gPwr Mgr Li bRef ) ;
if ( error !'= errNone )

{
error = SysLi bLoad( kPw MyrLi bType,
kPwr Mgr Li bCreat or, gPw MyrLi bRef );

ErrFatal Di splaylf( (error != errNone),
"can't | oad Power Manager Library" );

}

Once your application is done using the Power Manager Library
(normally when the application stops), you should unload the library
using the standard Palm OS® paradigm:

SysLi bRemove( gPwr Myr Li bRef ) ;

The supplied PwrMgrExample application is provided to demonstrate
the usage of the Power Manager Library.

The Power Manager Library and the Palm
OSe Simulator

The Power Manager Library is not supported by the Palm OS®
Simulator.

Power Manager Library Functions

PwrSetLowPowerMode

Purpose Set low power mode.

30 Programmer’s Reference for Garmin iQue 3600 Handheld



Power Manager Library
Power Manager Library Functions

Prototype Bool ean Pwr Set LowPower Mbde( Ul nt 16 ref Num
const U nt32 creator, const Bool ean enabl e )

Parameters -> ref Num Reference number for the library.
-> creator Creator ID of the calling application.
-> enabl e Set low power mode to true or false.

Result Returns true if the action was successful.

Comments Ifenabl e is true, the handheld will enter low power mode when the
auto-off time has expired. If enabl e is false, low power mode for
your application is disabled.

Programmer’s Reference for Garmin iQue 3600 Handheld 31






v
Que API Library

This chapter describes the Que API declared in the header file
QueAPI . h. It discusses the following topics:

* Introduction to the Que API Library
* Que API Library Data Structures

* Que API Library Constants

*  Que API Library Functions

Introduction to the Que API Library

Que API Library

The Que API Library provides access to Garmin map data stored in
device’s internal memory or stored on an external card. The Que API
library allows applications to create points at a specified latitude and
longitude, at the location of an address, at the location the user selects
from a map, and at the location of an item the user selects through the
find menu. The Que API library also allows applications to get
information about a point, display a form showing the details of a point
including its location on a map, display the map application centered on
the point, and create a route from the current location to a point.

Que API Library Concepts

The data returned when a point is created is a handle to the point, not

the actual data for the point. The advantages to this approach include:

* Isolates applications from memory management issues.

* Isolates applications from the details of the point data structure and
size, which helps ensure future compatibility.

Point handles can either be open or closed. A handle is open when it is
associated with data for a point; handles are opened when a point is
created. A handle is closed when it is not associated with data for a
point. Calling QueCl osePoi nt () closes open handles; closed
handles have a value of quel nval i dPoi nt Handl e.

The use of handles requires following a few simple rules:

Programmer’s Reference for Garmin iQue 3600 Handheld 33



Que API Library
Introduction to the Que API Library

e Before a handle is used it is considered closed; therefore handles
must be initialized to Quel nval i dPoi nt Handl e.

* A handle is opened when it is assigned a value from one of the
following APIs:

* QueCreatePoint ()
* QueCreat ePoi nt FronEvent ()
* QueDeserializePoint()

» Before your application exits, or when you are through using a
point, the handle must be closed by calling QueCl osePoi nt () .
After calling QueC osePoi nt () your application must set the
handle to Quel nval i dPoi nt Handl e.

* To store a point between invocations of your application, you must
store the serialized data using QueSer i al i zePoi nt () before
your application exits and re-create the point from the serialized
data using QueDeseri al i zePoi nt () when your application
starts. You must never store a handle between invocations of your
application.

Making the Que API Library Available

In order for the Que API library to be accessible, the Que API Library
patch must be installed on the handheld. The patch may be downloaded
from the iQue 3600 Software Update Collection page of the Garmin
web site. One way to navigate to this page is to select Software Updates
from the Quick Links along the left side of the home page, then select
1Que 3600 from the list of units.

Opening and Closing the Que API Library

To get access to the Que API Library, #i ncl ude QueAPI . h in your
application.

Before the Que API Library can be used, it must be found or loaded,
using the standard Palm OS® paradigm:

error = SysLi bFi nd( QueAPI Li bNane,
&gQueAPI Li bRef ) ;

if ( error !'= errNone )

{
error = SyslLi bLoad

34 Programmer’s Reference for Garmin iQue 3600 Handheld



Que API Library
Introduction to the Que API Library

(
QuUeAPI Li bType,

QueAPI Li bCreat or,
&gQueAPI Li bRef

);
ErrFatal Di splaylf( (error != errNone),
"can't | oad QueAPI Library" );

}

Once the Que API Library is found and loaded, it must be opened by
calling Que APl Qpen() . The queAPI Ver si on constant from
QueAPI . h is supplied as a parameter to allow the library to determine
if the version of the library expected by calling application is
compatible with the version of the library that is loaded.

QueAPI Open() returns queEr r I nval i dVer si on when the
versions are not compatible:

error = QueAPI Open( gQueAPI Li bRef,
gueAPI Version );

ErrFatal Displaylf( ( error ==
qgueErrinvalidVersion ), "Inconpatible
version of QueAPILib." );

Once your application is done using the Que API Library (normally
when the application stops), you should close and unload the library
using the standard Palm OS® paradigm:

___________________________________________ * |
error = QueAPI Cl ose( gQueAPI Li bRef );
/22
Unl oad the Library.
___________________________________________ * |
if ( error == QueErrNone )

{

SysLi bRenove( gQueAPI Li bRef );

}

Point Data Returned Through a Launch Code

Certain Que API Library APIs terminate the calling application in order
to launch other applications to perform the work. When the work is
done, the application specified in the API call is launched with a launch
code that contains the resulting point data. This requires the application
which receives the launch code to process this launch code data.

Programmer’s Reference for Garmin iQue 3600 Handheld 35



Que API Library
Introduction to the Que API Library

First, the Pi | ot Mai n() procedure must handle the
sysAppLaunchCndGoTo launch code. The exact way this is
handled depends on your application; however it will generally be
handled identically to a sysAppLaunchCndNor mal Launch with
the addition of sending the goto data to the initial form before entering
the event loop. If your application is already the current application, all
that must be done is to send the goto data to the active form. This is
illustrated below:

case sysAppLaunchCndGoTo:

i f ( aLaunchFl ags
& sysAppLaunchFl agNewd obal s

Start the application and go to
the main form

AppStart ();
Fr not oFor m( Mai nForm ) ;

Send the goto data to the main
form

Handl eGoTo
( ( GoToParansPtr ) aCnrdPBP
., Mai nForm

);

Enter the event |oop and stop the
appl i cati on when done.

AppEvent Loop() ;
f\ppSt op();

O herwise this is already the current
application, just send the goto data
to the main form

36 Programmer’s Reference for Garmin iQue 3600 Handheld



Que API Library
Introduction to the Que API Library

_____________________________________ *
el se
{
Handl eGoTo
( ( GoToParanmsPtr ) aCndPBP
,  Mai nForm
);
}
br eak;

Second, the Handl eGoTo() procedure must take the goto data from
the launch command and send it to the form as a f r G0t oEvent as
shown below:

static void Handl eGoTo
( GoToParansPtr aGoToPar ans
, const U ntl16 aForm D
)

{

Event Type event,

Mentet ( &event, sizeof ( EventType ), 0 );

event . eType = frntot oEvent;

event.data.frnmGoto. forml D = aFornl D

event . dat a. frnGot 0. recor dNum =
aGoToPar ans- >r ecor dNum

event . dat a. f rmGot 0. mat chPos =
aCGoToPar ans- >mat chPos;

event . dat a. frnGot 0. mat chLen =
aGoToPar anms- >mat chCust om

event . dat a. f r nGot 0. mat chFi el dNum =
aGoToPar ans- >mat chFi el dNum

event . dat a. f r nGot 0. mat chCust om =
aGoToPar ans- >mat chCust om

Evt AddEvent ToQueue( &event );

}

Third, the event handler for the form that will receive the

f r mGot oEvent must call QueHandl eEvent () . If

QueHandl eEvent () returns true,

QueCr eat ePoi nt Fr omEvent () must be called to create a point
from the event as shown below:

if ( QueHandl eEvent
( gQueAPI Li bRef
, aEventP )

Programmer’s Reference for Garmin iQue 3600 Handheld 37



Que API Library
Introduction to the Que API Library

)

{
QueCr eat ePoi nt Fr onEvent

( gQueAPI Li bRef

, akventP
,  &gPoi nt
)
}
The Que API Library APIs which return data through a launch code

are:

* QueCreat ePoi nt Fr omAddr ess()
* QueSel ect Addr essFronti nd()
* QueSel ect Poi nt FronFi nd()

* QueSel ect Poi nt Fr omvap()

See the Que API library example application in the SDK for a complete
example of processing point data returned through a launch code.

The Que API Library and the Palm OSe
Simulator

The Garmin Palm OS® Simulator supports accessing map data. To
make map data available to the simulator, a Palm database file
containing the detailed map data, named GMAPSUPP.PDB, must be
placed in the AutoLoad folder of the GarminSimulator folder. A Palm
database file containing basemap data, named GMAPBMAP.PDB, may
also be placed in the AutoLoad folder. Note that the combined size of
the map files plus the other files in the AutoLoad folder cannot exceed
the RAM size chosen in the simulator settings.

To create a GMAPSUPP.PDB:

* Follow the Map Install tool steps to select map sections for
installation. The Map Install tool is available along the left side of
the Garmin Palm Desktop.

* In the Device Setting section, select one of the iQue devices listed,
then select Internal Storage for the Map Storage Location.

* After clicking the OK button on the “Transfer Complete — HotSync
Required” dialog box, instead of performing a HotSync, move the
GMAPSUPP.PDB from the Install folder for the device to the
AutoLoad folder of the GarminSimulator folder.

To create a GMAPBMAP.PDB:

38 Programmer’s Reference for Garmin iQue 3600 Handheld



Que API Library
Que API Library Data Structures

*  Copy GMAPBMAP.PDB from the Basemap\AMR_LITE folder of
the Garmin install CD to the AutolLoad folder of the
GarminSimulator folder.

Que API Library Data Structures

Basic Data Types

uint8 Unsigned 8 bit integer.
ui nt 16 Unsigned 16 bit integer.
ui nt 32 Unsigned 32 bit integer.
sint8 Signed 8 bit integer.
sint16 Signed 16 bit integer.
si nt 32 Signed 32 bit integer.
TCHAR Char type.

QuePositionDataType

QuePosi t i onDat aType specifies the 3 dimensional position of a

point.
t ypedef struct
{
si nt 32 | at;
si nt 32 | on;
fl oat al t M5L;

} QuePosi tionDat aType;

Field Descriptions

| at The latitude of the point in semicircles.
Semicircles are described in GPS data
structure GPSPositionDataType.

[ on The longitude of the point in semicircles.
Semicircles are described in GPS data
structure GPSPositionDataType.

al t M5L The altitude above mean sea level of the
point in meters. This field is not used.

Programmer’s Reference for Garmin iQue 3600 Handheld 39



Que API Library
Que API Library Data Structures

QuePointType

QuePoi nt Type specifies the information about the position that is
available to an application.

t ypedef struct

{
char i d[ quePointldLen ];
QueSynbol T16 snbl ;

QuePosi tionDat aType posn;
} QuePoi nt Type;

Field Descriptions

id A NULL-terminated string
containing the name of the point.

snbl The symbol assocated with the
point. This field is not used.

posn The 3 dimensional position of the
point.

QueSelectAddressType

QueSel ect Addr essType specifies the address fields that can be
supplied when creating a point at an address.

t ypedef struct
{
const TCHAR *street Address;
const TCHAR *city;
const TCHAR *st at e,
const TCHAR *country;,
const TCHAR *post al Code;
} QueSel ect Addr essType;

Field Descriptions

street Addr ess A pointer to a NULL-terminated
string containing the street
number and street name of the
address.

40 Programmer’s Reference for Garmin iQue 3600 Handheld



Que API Library
Que API Library Constants

city

state

country

post al Code

Que API Library Constants

Error Codes

queEr r None
quekEr r Not Open

gueEr r BadAr g
quekrr Menory
quekr r NoDat a
qgueErr Al readyOpen

queErrl nval i dVersi on

gueEr r CmdUnavai |
queErrStill Open
queErr Fai |

gueEr r Cancel

Other values

A pointer to a NULL-terminated
string containing the city of the
address.

A pointer to a NULL-terminated
string containing the state of the
address.

A pointer to a NULL-terminated
string containing the country of
the address.

A pointer to a NULL-terminated
string containing the postal code
of the address.

Success.

attempted to close the library
without opening it first.

Invalid parameter passed.
Out of memory.

No data available.

The library is already open.

The library is an incompatible
version.

The command is unavailable.
Library is still open.
General failure.

Action cancelled by user.

Programmer’s Reference for Garmin iQue 3600 Handheld 41



Que API Library
Que API Library Functions

qguePoi nt | dLen Length of the point identifier
string including the NULL-
termination character.

guel nval i dSem circl es Invalid semicircle value.
guel nval i dAI tit ude Invalid altitude value.
quel nval i dPoi nt Handl e Invalid point handle.
guel nval i dSynbol Invalid symbol value.

Que API Library Functions

Purpose
Prototype

Parameters

Result

Comments

Purpose

Prototype

QueAPIClose
Closes the Que API Library.

QueErrT16 QueAPI Cl ose( const U ntl1l6 refNum)

-> ref Num Reference number for the library.

quekr r None No error.

gueEr r Not Open The library is not open.

queErrStill Open Couldn't be closed because the
library is still in use by other
applications.

Closes the Que API Library and disposes of the global data memory if
required. Called by any application or library that's been using the Que
API Library and is now finished with it.

This should not be called if Que API Open failed.

If queErr Sti |l | Open is returned, the calling app should not call
SysLi bRenove().

QueAPIOpen
Opens the Que API Library.

QueErrT16 QueAPI Open(
const U ntl6 refNum const U ntl1l6 version )

42 Programmer’s Reference for Garmin iQue 3600 Handheld



Que API Library
Que API Library Functions

Parameters

Result

Comments

Purpose

Prototype

Parameters

Result

Comments

Purpose

-> ref Num Reference number for the library.

-> version Version of library expected by the
application.

queEr r None No error.

queErr Menory Unable to get memory for the
library.

queErr I nval i dVersion The expected version of the library is
not compatible with this library.

Opens the Que API Library and prepares it for use. Called by any
application or library that wants to use the services that the library
provides.

QueAPI Open() must be called before calling any other Que API
Library functions. If the return value is anything other than
quekEr r None the library was not opened.

QueClosePoint
Closes the handle to a point.
QueErrT16 Qued osePoi nt (

const U nt16 refNum
const QuePoi nt Handl e point )

-> ref Num Reference number for the library.
-> point Point handle to be closed.

queEr r None No error.

queEr r BadArg The point handle was not open.

Closes the handle to a point. This must be called for all open point
handles before exiting your application. After calling this procedure,
the caller should set the point handle to quel nval i dPoi nt Handl e
to indicate that it has been closed.

QueCreatePoint

Creates a point with the specified data.

Programmer’s Reference for Garmin iQue 3600 Handheld 43



Que API Library
Que API Library Functions

Prototype QueErrT16 QueCreatePoint( const U nt16 refNum
const QuePoi nt Type *poi nt Dat a,
QuePoi nt Handl e *poi nt )

Parameters -> ref Num Reference number for the library.

-> poi nt Dat a Pointer to the data to use when
creating the point.

<- poi nt Contains the point handle of the
created point.

Result queErr None No error.
queErr Menory Unable to get memory for the point.
queEr r BadArg The point handle was already open.

Comments If an error occurs, the returned point handle may not be open.

QueCreatePointFromAddress
Purpose Creates a point from the specified address data.

Prototype QueErrT16 QueCreat ePoi nt Fr omAddr ess(
const U nt16 refNum
const QueSel ect Addr essType *addr ess,
const Ul nt32 rel aunchAppCreator )

Parameters -> ref Num Reference number for the library.

-> address Pointer to the address data to use
when creating the point.

-> rel aunchAppCreat or  Creator ID of the application to
launch when the point has been

created.
Result queErr None No error.
queErr Menory Unable to get the library’s global
data.

Comments Creates a point at the location of the specified address.

44 Programmer’s Reference for Garmin iQue 3600 Handheld



Que API Library
Que API Library Functions

Purpose

Prototype

Parameters

Result

Comments

IMPORTANT: This call terminates the calling application and
returns the results through a launch code. See the Point Data
Returned Through a Launch Code section for more details.

Not all fields of the input address data need to be supplied; a match will
be attempted using the fields that contain data. Any unused fields
should be set to NULL.

If a single address match cannot be found an invalid point handle will
be returned through the launch code.

QueCreatePointFromEvent
Creates a point from a f r N30t oEvent that contains point data.

QueErrT16 QueCreat ePoi nt FronEvent (
const Ul ntl16ref Num const Event Type*event,
QuePoi nt Handl e *point )

-> ref Num Reference number for the library.

-> event Pointer to the f r mGot oEvent that
contains point data.

<- poi nt Contains the point handle of the
created point.

queEr r None No error.

queEr r NoDat a The event did not contain the
necessary data.

queEr r BadArg The point handle was already open.

queErr Menory Unable to allocate memory for the
point or unable to get the library’s
global data.

Creates a point from the f r mGot oEvent data. This event is sent
when the specified application is launched after calling certain Que API
library APIs. See the Point Data Returned Through a Launch Code
section for more details. This should only be called if the result of

Quel sFi ndResul t Event () is true.

If an error is returned the point handle will not be open.

Programmer’s Reference for Garmin iQue 3600 Handheld 45



Que API Library
Que API Library Functions

QueDeserializePoint
Purpose Creates a point from serialized point data.

Prototype QueErrT16 QueDeseri ali zePoi nt (
const U ntl6 refNum const void *pointDat a,
const Ul nt 32 poi ntDat aSi ze,
QuePoi nt Handl e *poi nt )

Parameters -> ref Num Reference number for the library.
-> poi nt Dat a Pointer to the serialized point data.
-> poi nt Dat aSi ze Size in bytes of the serialized point
data.
<- poi nt Contains the point handle of the

created point.

Result queErr None No error.

queEr r BadArg The point handle was already open,
the pointer to the serialized data was
NULL, the point data size was
incorrect, or the format of the
serialized point data was not
recognized.

queErr Menory Unable to allocate memory for the
point or unable to get the library’s
global data.

Comments Creates a point from the serialized point data created by
QueSeri al i zePoi nt () . See the description of
QueSeri al i zePoi nt () for more information.

If an error is returned the point handle will not be open.

QueGetPointInfo

Purpose Returns information about the point.

Prototype QueErrT16 QueGet Pointlnfo( const U ntl16 ref Num
const QuePoi nt Handl e poi nt,
QuePoi nt Type *pointinfo )

46 Programmer’s Reference for Garmin iQue 3600 Handheld



Que API Library
Que API Library Functions

Parameters

Result

Purpose

Prototype

Parameters

Result

Comments

Purpose

Prototype

Parameters

-> ref Num Reference number for the library.

-> poi nt Point handle from which to get
information.

<- pointinfo Contains the information about the
point.

queEr r None No error.

queEr r BadArg The point handle was not open.

QueHandleEvent
Handles Que API library events.

Bool ean QueHandl eEvent ( const U nt16 ref Num
const Event Type *event )

-> ref Num Reference number for the library.
-> event Pointer to the event.

Returns true if the event contains contains point data. If the event
contains point data then QueCr eat ePoi nt Fr onEvent () can be
called to create a point from the event.

This should be called in the active form’s event loop because there is
other Que API library processing performed during this call.

QueRouteToPoint
Creates a route from the current location to the point.
QueErrT16 QueRout eToPoi nt( const U nt16 ref Num

const QuePoi nt Handl e poi nt,
const Bool ean showivap )

-> ref Num Reference number for the library.
-> poi nt Point handle to route to.
-> showivap t r ue to terminate calling

application and activate the QueMap
application centered on the vehicle,
f al se to remain in the calling
application.

Programmer’s Reference for Garmin iQue 3600 Handheld 47



Que API Library
Que API Library Functions

Result

Purpose

Prototype

Parameters

Result

Comments

queEr r None No error.

queEr r BadAr g The point handle is not open.

queErr Menory Unable to get the library’s global
data.

IMPORTANT: If showiVap is true, this call terminates the calling
application.

QueSelectAddressFromFind

Allows the user to create a point by selecting an address from the find
address form.

QueErrT16 QueSel ect Addr essFronfi nd(
const U nt16 refNum

const QueSel ect Addr essType *addr ess,
const Ul nt32 rel aunchAppCreat or,
const Bool ean tryToCreateFirst )

-> ref Num Reference number for the library.

-> address Pointer to the address data to use
when selecting the point.

-> rel aunchAppCreat or  Creator ID of the application to
launch when the point has been
created.

-> tryToCreat eFirst Tries to create the point from the
address data before displaying the
find address form. See comments for
more details.

queEr r None No error.
queErr Menory Unable to get the library’s global
data.

Displays the QueFind address form to allow the user to select an
address from which to create a point.

IMPORTANT: This call terminates the calling application and
returns the results through a launch code. See the Point Data
Returned Through a Launch Code section for more details.

48 Programmer’s Reference for Garmin iQue 3600 Handheld



Que API Library
Que API Library Functions

Purpose

Prototype

Parameters

Result

Comments

The fields of the address form will be pre-filled with the supplied
address data. Not all fields of the input address data need to be
supplied; any unused fields should be set to NULL.

IftryToCr eat eFi r st is true, this call will first attempt to create a
point at the location of the specified address exactly like

QueCr eat ePoi nt Fr omAddr ess() . If a single address match is
found, it will be returned through the launch code and the QueFind
address form will not be displayed. If a single address match cannot be
found, then the QueFind address form is displayed exactly as if this was
called witht r yToCr eat eFi r st set to false.

If the user cancels finding an address an invalid point handle will be
returned through the launch code.

QueSelectPointFromFind
Allows the user to create a point by selecting an item using QueFind.

QueErrT16 QueSel ect Poi nt Fr onFi nd(
const U nt16 refNum
const Ul nt32 rel aunchAppCreator )

-> ref Num Reference number for the library.

-> rel aunchAppCreat or  Creator ID of the application to
launch when the point has been

created.

quekr r None No error.

queErr Menory Unable to get the library’s global
data.

Displays QueFind to allow the user to select an item from which to
create a point. This is similar to QueSel ect Addr essFr onfFi nd()
except this will display the top-level QueFind page.

IMPORTANT: This call terminates the calling application and
returns the results through a launch code. See the Point Data
Returned Through a Launch Code section for more details.

If the user cancels finding an item an invalid point handle will be
returned through the launch code.

Programmer’s Reference for Garmin iQue 3600 Handheld 49



Que API Library
Que API Library Functions

QueSelectPointFromMap
Purpose Allows the user to create a point by selecting it from a map.

Prototype QueErrT16 QueSel ect Poi nt Fr omvVap(
const U nt16 refNum
const Ul nt32 rel aunchAppCreator )

Parameters -> ref Num Reference number for the library.

-> rel aunchAppCreat or  Creator ID of the application to
launch when the point has been

created.
Result queErr None No error.
queErr Menory Unable to get the library’s global
data.

Comments Allow the user to create a point by tapping a location on a displayed
map.

IMPORTANT: This call terminates the calling application and
returns the results through a launch code. See the Point Data
Returned Through a Launch Code section for more details.

If the user cancels the operation an invalid point handle will be returned
through the launch code.

QueSerializePoint
Purpose Returns the serialized data that represents the point.
Prototype U nt32 QueSerializePoint( const Untl6 refNum

const QuePoi nt Handl e poi nt,
voi d *poi ntData, const Ul nt32 pointDataSize )

Parameters -> ref Num Reference number for the library.
-> poi nt Point handle to serialize.
<- poi nt Dat a Contains the serialized data.
-> poi nt Dat aSi ze Size in bytes of the poi nt Dat a
buffer.

50 Programmer’s Reference for Garmin iQue 3600 Handheld



Que API Library
Que API Library Functions

Result

Comments

Purpose

Prototype

Parameters

Result

Comments

Returns the size in bytes of the serialized data.

Returns the serialized data (i.e. series of bytes) that represents the point.
This is used for long-term storage of the point. The point can be re-
created by calling QueDeseri al i zePoi nt ().

This always returns the size in bytes of the serialized data. If the
supplied buffer is not large enough to hold all the serialized data, no
data will be written into the buffer.

Typical usage is to call QueSer i al i zePoi nt () once with

poi nt Dat a set to NULL and poi nt Dat aSi ze set to 0, then use
the returned size to allocate a buffer to hold the serialized data. Then
call QueSeri al i zePoi nt () again with the address and size of the
allocated buffer.

IMPORTANT: Never set poi nt Dat a to NULL without setting
poi nt Dat aSi ze equal to O.

QueSetRouteToltem
Sets the route form “Route to” item to the point.

QueErrT16 QueSet Rout eTol t em(
const U nt1l6 refNum
const QuePoi nt Handl e point )

-> ref Num Reference number for the library.

-> poi nt Point handle to set the “Route to”
item to, or an invalid point handle to
clear the “Route to” item.

queEr r None No error.

queErr Menory Unable to get the library’s global
data.

queErr Fai | Unable to set the “Route to” item.

Sets the “Route to” item on the route form to the specified point. The
“Route to” item will be cleared when the library is closed, which
normally will happen when the application using the library exits. The

Programmer’s Reference for Garmin iQue 3600 Handheld 51



Que API Library
Que API Library Functions

item can be cleared by calling QueSet Rout eTol t en( ) with a point
handle value of quel nval i dPoi nt Handl e.

The “Route to” item is the context-sensitive item that is displayed
above the route icons when QueRoutes is displayed modally by tapping
the route icon in the graffiti area or in the status bar.

QueViewPointDetalils

Purpose Displays a modal form containing a map and other details about the
point.

Prototype QueErrT16 QueVi ewPoi nt Det ai | s(
const U nt16 ref Num
const QuePoi nt Handl e point )

Parameters -> ref Num Reference number for the library.
-> poi nt Point handle to view the details of.
Result queErr None No error.
queErr Menory Unable to get the library’s global
data.
queEr r BadArg The point handle is not open.

QueViewPointOnMap

Purpose Switches to the QueMap application centered on the point.

Prototype QueErrT16 QueVi ewPoi nt OnMap(
const U nt1l6 refNum
const QuePoi nt Handl e point )

Parameters -> ref Num Reference number for the library.
-> poi nt Point handle to view on map.
Result queErr None No error.
queErr Menory Unable to get the library’s global
data.
queEr r BadAr g The point handle is not open.

52 Programmer’s Reference for Garmin iQue 3600 Handheld



Que API Library
Que API Library Functions

Comments This terminates the calling application and launches the QueMap
application centered on the specified point.

IMPORTANT: This call terminates the calling application.

Programmer’s Reference for Garmin iQue 3600 Handheld 53



	Table of Contents
	Overview
	Purpose of This Document
	Conventions Used in This Document
	Tools for Software Development
	CodeWarrior for Palm OS® Platform
	Palm OS® 5.0 SDK
	Palm OS® 5.2 Simulator

	Garmin SDK
	Components
	Unpacking the SDK


	Features
	Feature Creator
	Feature Numbers
	garminFtrNumPenInputServices
	garminFtrNumExtraKeys
	garminFtrNumIntegratedGPS
	garminFtrNumMedia


	GPS Library
	Introduction to the GPS Library
	Using the GPS Library
	GPS Data and the Palm OS® Simulator

	GPS Library Data Structures
	GPSFixT8
	GPSModeT8
	GPSPositionDataType
	GPSPVTDataType
	GPSSatDataType
	GPSStatusDataType
	GPSTimeDataType
	GPSVelocityDataType

	GPS Library Constants
	GPS Library Error Codes
	Extended Notification Information
	Satellite Status Bitfield Values

	GPS Library Functions
	GPSClose
	GPSGetLibAPIVersion
	GPSGetMaxSatellites
	GPSGetPosition
	GPSGetPVT
	GPSGetSatellites
	GPSGetStatus
	GPSGetTime
	GPSGetVelocity
	GPSOpen


	Pen Input Manager
	Introduction to the Pen Input Manager
	Pen Input Manager
	Dynamic Input Area Concepts
	Pen Input Manager Feature
	Using the Pen Input Manager
	Determining When the Dynamic Input Area State Changes
	Determining the Size of the Application Display Area

	Pen Input Manager Data Structures
	FrmDIAPolicyT16
	PinInputAreaStateT16
	PinInputTriggerStateT16

	Pen Input Manager Constants
	Pen Input Manager Functions
	FrmGetDIAPolicyAttr
	FrmSetDIAPolicyAttr
	PINGetInputAreaState
	PINGetInputTriggerState
	PINSetInputAreaState
	PINSetInputTriggerState
	WinSetConstraintSize


	Additional Hardware Buttons
	Introduction to the Additional Buttons
	Additional Buttons
	Garmin Buttons and the Palm OS® Simulator

	Button Activity Reporting
	Button Constants
	Responding to the Additional Buttons

	Power Manager Library
	Introduction to the Power Manager Library
	Low Power Mode
	Using the Power Manager Library
	The Power Manager Library and the Palm OS®  Simu�

	Power Manager Library Functions
	PwrSetLowPowerMode


	Que API Library
	Introduction to the Que API Library
	Que API Library
	Que API Library Concepts
	Making the Que API Library Available
	Opening and Closing the Que API Library
	Point Data Returned Through a Launch Code
	The Que API Library and the Palm OS®  Simulator

	Que API Library Data Structures
	Basic Data Types
	QuePositionDataType
	QuePointType
	QueSelectAddressType

	Que API Library Constants
	Error Codes
	Other values

	Que API Library Functions
	QueAPIClose
	QueAPIOpen
	QueClosePoint
	QueCreatePoint
	QueCreatePointFromAddress
	QueCreatePointFromEvent
	QueDeserializePoint
	QueGetPointInfo
	QueHandleEvent
	QueRouteToPoint
	QueSelectAddressFromFind
	QueSelectPointFromFind
	QueSelectPointFromMap
	QueSerializePoint
	QueSetRouteToItem
	QueViewPointDetails
	QueViewPointOnMap



