
Programmer’s Reference
for Garmin iQue 3600

Handheld

ii Programmer’s Reference for Garmin iQue 3600 Handheld

® Copyright 2004 PalmSource and Garmin Ltd. or its subsidiaries. All Rights Reserved.
This documentation may be printed and copied solely for use in developing products for
the iQue 3600 handheld. In addition, two (2) copies of this documentation may be made

for archival and backup purposes. Except for the foregoing, no part of this documentation
may be reproduced or transmitted in any form or by any means or used to make any
derivative work (such as translation, transformation or adaptation) without express

written consent from Garmin Ltd.

Garmin Ltd. reserves the right to revise this documentation and to make changes in
content from time to time without obligation on the part of Garmin Ltd. to provide
notification of such revision or changes.

GARMIN LTD. AND ITS SUPPLIERS MAKE NO REPRESENTATIONS OR
WARRANTIES THAT THE DOCUMENTATION IS FREE OF ERRORS OR THAT
THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE
DOCUMENTATION IS PROVIDED ON AN �AS IS� BASIS. GARMIN LTD. AND
ITS SUBSIDIARIES AND SUPPLIERS MAKE NO WARRANTIES, TERMS OR
CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF
LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND/OR SATISFACTORY QUALITY. TO THE FULL EXTENT
ALLOWED BY LAW, GARMIN LTD. ALSO EXCLUDES FOR ITSELF, ITS
SUBSIDIARIES, AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN
CONTRACT OR TORT (INCLUDING NEGLIGENCE), FOR DIRECT,
INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE
DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF
BUSINESS, LOSS OF INFORMATION OR DATA, OR OTHER FINANCIAL LOSS
ARISING OUT OF OR IN CONNECTION WITH THIS DOCUMENTATION, EVEN
IF GARMIN, LTD., ITS SUBSIDIARIES, OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm OS, the Palm logo, PalmSource, Graffiti 2, HotSync, Palm, Palm Powered, the
Palm Powered logo, the PalmSource logo, and the HotSync logo are trademarks of
PalmSource, Inc.

Garmin® is a registered trademark and iQue� and Que� are trademarks of Garmin Ltd.
or its subsidiaries and may not be used without the express permission of Garmin.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER
SOFTWARE AND DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT
TO THE LICENSE AGREEMENT ACCOMPANYING THE COMPACT DISC.

Programmer’s Reference for Garmin iQue 3600 Handheld iii

Table of Contents
Overview 1

Purpose of This Document..1
Conventions Used in This Document ...1
Tools for Software Development ..1
Garmin SDK..2

Features 3
Feature Creator..3
Feature Numbers ...3

GPS Library 5
Introduction to the GPS Library..5
GPS Library Data Structures...6
GPS Library Constants..11
GPS Library Functions..12

Pen Input Manager 17
Introduction to the Pen Input Manager ...17
Pen Input Manager Data Structures ..19
Pen Input Manager Constants ...21
Pen Input Manager Functions ...21

Additional Hardware Buttons 25
Introduction to the Additional Buttons ...25
Button Activity Reporting...26
Button Constants ...26
Responding to the Additional Buttons ..26

Power Manager Library 29
Introduction to the Power Manager Library ...29
Power Manager Library Functions ...30

Que API Library 33
Introduction to the Que API Library...33
Que API Library Data Structures..39
Que API Library Constants...41
Que API Library Functions...42

Programmer’s Reference for Garmin iQue 3600 Handheld 1

1
Overview

Purpose of This Document
Programmer's Reference for Garmin iQue 3600 Handheld is a part of
the Garmin Software Development Kit. This document details the
information necessary for software development for the Garmin iQue�
3600 handheld, software Release 3 or later.

Conventions Used in This Document

Throughout this document, a fixed width font is used to signify
code elements such as files, functions, structures, fields, and bitfields.

Tools for Software Development

CodeWarrior for Palm OS® Platform
This contains the Integrated Development Environment (IDE) and all
the tools required to develop Palm OS® applications. The development
of the applications for the iQue 3600 was performed using
CodeWarrior for Palm OS® Platform version 8.3. For more
information, visit the Metrowerks web site at
http://www.metrowerks.com.

Palm OS® 5.0 SDK
For basic development information for Palm OS® applications,
including the Palm OS® 5.0 SDK, visit http://www.palmos.com.

Palm OS® 5.2 Simulator
This simulates a Palm OS® 5.2 device. It allows for the testing and
debugging of applications. This may be found at
http://www.palmos.com/dev/tools/simulator/index.html. This SDK is
compatible only with the Palm OS 5.2 Simulator.

http://www.metrowerks.com/
http://www.palmos.com/

Overview
Garmin SDK

2 Programmer’s Reference for Garmin iQue 3600 Handheld

Garmin SDK

Components
GarminSimulator.zip includes new PalmSim.exe and DAL.dll files, as
well as other DLL files to implement the Garmin extensions. It also
includes in the AutoLoad folder the necessary PRCs for the Garmin
extensions, as well as prebuilt PRCs for the Garmin examples
GPSInfo.prc and PINMgrExample.prc.

GarminExamples.zip contains the source code for the Garmin
examples. It also includes the prebuilt PRC for the third Garmin
example, PwrMgrExample, since this application cannot be used in the
simulator.

GarminSupport.zip contains the Garmin-specific include files.

Unpacking the SDK
1. If you have not done so already, get the Palm OS® 5.2 debug

simulator (Palm_OS_52_Simulator_Dbg.zip) from
http://www.palmos.com/dev/tools/simulator/index.html, and unzip
that onto your hard drive.

2. Copy the Palm OS® 5.2 Simulator "Debug" folder and all of its
contents to a new folder named "GarminDebug".

3. Extract GarminSimulator.zip into this new "GarminDebug" folder.

4. Extract GarminExamples.zip into a convenient folder, such as the
"(CodeWarrior Examples)" folder of your CodeWarrior
installation.

5. Extract the GarminSupport.zip file into a convenient folder, such
as the "Other SDKs" folder of your CodeWarrior installation. This
will create a "Garmin" folder under the folder it is extracted into.
Remember to add this folder to the access paths of any projects
that need to use the Garmin-specific include files.

6. The first time you run the simulator, confirm that the RAM size
Memory Setting is at least 32 MB and that the Dynamic Heap Size
Memory Setting is at least 2048 KB.

http://www.palmos.com/dev/tools/simulator/index.html

Programmer’s Reference for Garmin iQue 3600 Handheld 3

2
Features
The FtrGet()API may be used to determine if a feature is present in
the Garmin handheld device. For more information on the FtrGet()
API, see the Palm OS® documentation.

This chapter describes the various features available in the Garmin
iQue 3600 handheld, which are defined in the header file Garmin.h.
It discusses the following topics:

• Feature Creator
• Feature Numbers

Feature Creator
To access the features unique to the Garmin Handheld, use
garminFtrCreator as the creator argument for FtrGet().

Feature Numbers

For the featureNum argument, specify a value described below.

garminFtrNumPenInputServices
Call FtrGet() with this value to determine if the Pen Input Manager
API is present.

err = FtrGet(garminFtrCreator,
garminFtrNumPenInputServices, &PenData
);

If ftrErrNoSuchFeature is returned, the Pen Input Manager API
is not present.

garminFtrNumExtraKeys
Call FtrGet() with this value to determine if the additional hardware
buttons are present.

err = FtrGet(garminFtrCreator,
garminFtrNumExtraKeys, &KeyData);

Features
Feature Numbers

4 Programmer’s Reference for Garmin iQue 3600 Handheld

If ftrErrNoSuchFeature is returned, the additional hardware
buttons are not present.

garminFtrNumIntegratedGPS
Call FtrGet() with this value to determine if an integrated GPS is
present in the handheld.

err = FtrGet(garminFtrCreator,
garminFtrNumIntegratedGPS, &GPSdata);

If ftrErrNoSuchFeature is returned, an integrated GPS is not
present in the handheld.

garminFtrNumMedia
Call FtrGet() with this value to determine the media features
present in the handheld.

err = FtrGet(garminFtrCreator,
garminFtrNumMedia, &MediaData);

If ftrErrNoSuchFeature is returned, there are no media features
present in the handheld. Otherwise, the third parameter will contain a
set of bits, which are a mask for the different media features that are
present, as specified below.

Media Mask Description
garminMediaIntegratedMicrophone An integrated microphone is present in

the handheld

garminMediaWAVOutput WAV output is supported by the
handheld

garminMediaMP3Output MP3 output is supported by the handheld

Programmer’s Reference for Garmin iQue 3600 Handheld 5

3
GPS Library
To begin learning more about GPS, visit
http://www.garmin.com/aboutGPS.

This chapter describes the GPS Library declared in the header file
GPSLib68K.h. It discusses the following topics:

• Introduction to the GPS Library
• GPS Library Data Structures
• GPS Library Constants
• GPS Library Functions

Introduction to the GPS Library

Using the GPS Library
The GPS Library provides access to the data from the internal GPS. To
get access to the GPS Library, #include GPSLib68K.h in your
application.

Before the GPS Library can be used, it must be found or loaded, using
the standard Palm OS® paradigm:

/*---
Find the GPS library. If not found, load it.
---*/
error = SysLibFind(gpsLibName, &gGPSLibRef);

if (error != errNone)
{
error = SysLibLoad

(
gpsLibType,
gpsLibCreator,
&gGPSLibRef
);

ErrFatalDisplayIf((error != errNone),
"can't load GPS Library");
}

The GPS Library normally computes new data once a second. When
data is computed, the GPS Library broadcasts the notification

http://www.garmin.com/aboutGPS

GPS Library
GPS Library Data Structures

6 Programmer’s Reference for Garmin iQue 3600 Handheld

sysNotifyGPSDataEvent. Once your application has registered
for this notification, it can call the GPSGet functions when this
notification is received. The GPSGet functions can also be used
strictly on a polling or as needed basis.

Once your application is done using the GPS Library (normally when
the application stops), you should close and unload the library using the
standard Palm OS® paradigm:

/*---
Close the library.
---*/
err = GPSClose(gGPSLibRef);

/*---
Unload the GPS Library.
---*/
if (err != gpsErrStillOpen)

{
SysLibRemove(gGPSLibRef);
}

GPS Data and the Palm OS® Simulator
GPS data may be received when using the Palm OS® Simulator by
following these steps:

1. Connect a recent model Garmin GPS to a PC serial port. The Serial
Data Format on the Garmin GPS unit must be set to �Garmin�,
which is the default setting.

2. Right-click in the Simulator and select
Settings|Communication|Communication ports. Select the Cradle
Communication Port and bind it to the COM port to which the
Garmin GPS is connected.

3. Turn on the Garmin GPS and put the unit into Simulator mode.
With the unit in Simulator mode, it is possible for you to adjust
position, velocity, altitude, and track on the unit and have those
changes reflected in the Palm OS® Simulator. If satellite signals are
available at your PC, GPS information will also be present in the
Palm OS® Simulator when the unit is operated normally.

GPS Library Data Structures

GPSFixT8

GPS Library
GPS Library Data Structures

Programmer’s Reference for Garmin iQue 3600 Handheld 7

GPSFixT8 defines the quality of the position computation. Based on
the number of satellites being received and the availability of
differential correction (such as WAAS), the position may be known in
two dimensions (latititude and longitude) or three dimensions (latitude,
longitude, and altitude).

typedef Int8 GPSFixT8; enum
{
gpsFixUnusable = 0,
gpsFixInvalid = 1,
gpsFix2D = 2,
gpsFix3D = 3,
gpsFix2DDiff = 4,
gpsFix3DDiff = 5
};

Value Descriptions

gpsFixUnusable GPS failed integrity check.

gpsFixInvalid GPS is invalid or unavailable.

gpsFix2D Two dimensional position.

gpsFix3D Three dimensional position.

gpsFix2DDiff Two dimensional differential
position.

gpsFix3DDiff Three dimensional differential
position.

GPSModeT8
GPSModeT8 defines the modes for the GPS.

typedef Int8 GPSModeT8; enum
{
gpsModeOff = 0,
gpsModeNormal = 1,
gpsModeBatSaver = 2,
gpsModeSim = 3,
gpsModeExternal = 4
};

Value Descriptions

gpsModeOff GPS is off.

gpsModeNormal Continuous satellite tracking.

GPS Library
GPS Library Data Structures

8 Programmer’s Reference for Garmin iQue 3600 Handheld

gpsModeBatSaver Periodic satellite tracking to
conserve battery power.

gpsModeSim Simulated GPS information.

gpsModeExternal External source of GPS
information.

GPSPositionDataType
GPSPositionDataType defines the position data returned by the
GPS. The GPSPositionDataType uses integers to indicate latitude
and longitude in semicircles, where 231 semicircles are equal to 180
degrees. North latitudes and East longitudes are indicated with positive
numbers; South latitudes and West longitudes are indicated with
negative numbers. The following formulas show how to convert
between degrees and semicircles:

degrees = semicircles * (180 / 231)
semicircles = degrees * (231 / 180)

typedef struct
{
Int32 lat;
Int32 lon;
float altMSL;
float altWGS84;
} GPSPositionDataType;

Field Descriptions

lat Latitude component of the position in
semicircles.

lon Longitude component of the position in
semicircles.

altMSL Altitude above mean sea level component of
the position in meters.

altWGS84 Altitude above WGS84 ellipsoid component
of the position in meters.

GPSPVTDataType
GPSPVTDataType combines the GPS data types into one structure.

typedef struct
{
GPSStatusDataType status;

GPS Library
GPS Library Data Structures

Programmer’s Reference for Garmin iQue 3600 Handheld 9

GPSPositionDataType position;
GPSVelocityDataType velocity;
GPSTimeDataType time;
} GPSPVTDataType;

Field Descriptions

status GPS status.

position GPS position.

velocity GPS velocity.

time GPS time.

GPSSatDataType
GPSSatDataType defines the data for one satellite.

typedef struct
{
UInt8 svid;
UInt8 status;
Int16 snr;
float azimuth;
float elevation;
} GPSSatDataType;

Field Descriptions

svid The space vehicle identifier for the satellite.

status The status bitfield the for satellite (see
constants later).

snr The satellite signal to noise ratio * 100 (dB
Hz).

azimuth The satellite azimuth (radians).

elevation The satellite elevation (radians).

GPSStatusDataType
GPSStatusDataType defines the status data reported by the GPS.

typedef struct
{
GPSModeT8 mode;
GPSFixT8 fix;
UInt16 filler2;
float epe;

GPS Library
GPS Library Data Structures

10 Programmer’s Reference for Garmin iQue 3600 Handheld

float eph;
float epv;
} GPSStatusDataType;

Field Descriptions

mode GPS mode.

fix GPS fix.

filler2 Alignment padding.

epe The one-sigma estimated position error in
meters.

eph The one-sigma horizontal only estimated
position error in meters.

epv The one-sigma vertical only estimated
position error in meters.

GPSTimeDataType
GPSTimeDataType defines the time data returned by the GPS.

typedef struct
{
UInt32 seconds;
UInt32 fracSeconds;
} GPSTimeDataType;

Field Descriptions

seconds Seconds since midnight UTC.

fracSeconds To determine the fractional seconds, divide
the value in this field by 232.

GPSVelocityDataType
GPSVelocityDataType defines the velocity data returned by the
GPS. The individual East, North, and up components completely
describe the velocity. The track and speed fields are provided for
convenient access to the most commonly used application of GPS
velocity.

typedef struct
{
float east;
float north;
float up;

GPS Library
GPS Library Constants

Programmer’s Reference for Garmin iQue 3600 Handheld 11

float track;
float speed;
} GPSVelocityDataType;

Field Descriptions

east The East component of the velocity in
meters per second.

north The North component of the velocity in
meters per second.

up The upwards component of the velocity in
meters per second.

track The horizontal vector of the velocity in
radians.

speed The horizontal speed in meters per second.

GPS Library Constants

GPS Library Error Codes
gpsErrNone No error.

gpsErrNotOpen The GPS Library is not open.

gpsErrStillOpen The GPS Library is still open.

gpsErrMemory Not enough memory.

gpsErrNoData No GPS data available.

Extended Notification Information
The GPS Library broadcasts a sysNotifyGPSDataEvent when the
GPS information changes. The notifyDetailsP of this notification
is a UInt32 (not a pointer to a UInt32) which contains one of the
following extended notification information values indicating the
reason for the notification.

gpsLocationChange The GPS position has changed.

gpsStatusChange The GPS status has changed.

gpsLostFix The quality of the GPS position
computation has become less than
two dimensional.

GPS Library
GPS Library Functions

12 Programmer’s Reference for Garmin iQue 3600 Handheld

gpsSatDataChange The GPS satellite data has
changed.

gpsModeChange The GPS mode has changed.

Satellite Status Bitfield Values
These define the bits in the status field of GPSSatDataType.

gpsSatEphMask Ephemeris: 0 = no ephemeris, 1 =
has ephemeris.

gpsSatDifMask Differential: 0 = no differential
correction, 1 = differential
correction.

gpsSatUsedMask Used in solution: 0 = no, 1 = yes.

gpsSatRisingMask Satellite rising: 0 = no, 1 = yes.

GPS Library Functions

GPSClose

Purpose Close the GPS Library.

Prototype Err GPSClose(const UInt16 refNum)

Parameters -> refNum Reference number for the library.

Result gpsErrNone No error.

gpsErrStillOpen Couldn't be closed because the
library is still in use by other
applications.

Comments Closes the GPS Library and disposes of the global data memory if
required. Called by any application or library that's been using the GPS
Library and is now finished with it.

This should not be called if GPSOpen failed.

If gpsErrStillOpen is returned, the calling app should not call
SysLibRemove.

GPSGetLibAPIVersion

GPS Library
GPS Library Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 13

Purpose Get the GPS Library API version.

Prototype UInt16 GPSGetLibAPIVersion
(const UInt16 refNum)

Parameters -> refNum Reference number for the library.

Result The API version of the library.

Comments Can be called without opening the GPS Library first.

GPSGetMaxSatellites

Purpose Get the maximum number of satellites.

Prototype UInt8 GPSGetMaxSatellites
(const UInt16 refNum)

Parameters -> refNum Reference number for the library.

Result Maximum number of satellites that are currently supported.

Comments The value returned by this routine should be used in the dynamic
allocation of the array of satellites (GPSSatDataType).

GPSGetPosition

Purpose Get current position data.

Prototype Err GPSGetPosition(const UInt16 refNum,
GPSPositionDataType *position)

Parameters -> refNum Reference number for the library.

<- position Contains the latest position from the
GPS.

Result gpsErrNone No error.

gpsErrNotOpen The GPS Library is not open.

gpsErrNoData No data has been received for a
period of time.

GPS Library
GPS Library Functions

14 Programmer’s Reference for Garmin iQue 3600 Handheld

Comments If the return value is not gpsErrNone, the data should be considered
invalid.

GPSGetPVT

Purpose Get current position, velocity, and time data.

Prototype Err GPSGetPVT(const UInt16 refNum,
GPSPVTDataType *pvt)

Parameters -> refNum Reference number for the library.

<- pvt Contains the latest position, velocity,
and time data from the GPS.

Result gpsErrNone No error.

gpsErrNotOpen The GPS Library is not open.

gpsErrNoData No data has been received for a
period of time.

Comments If the return value is not gpsErrNone, the data should be considered
invalid.

If pvt->status.fix is equal to gpsFixUnusable or
gpsFixInvalid, the rest of the data in the structure should be
considered invalid.

GPSGetSatellites

Purpose Get current satellite data.

Prototype Err GPSGetSatellites(const UInt16 refNum,
GPSSatDataType *sat)

Parameters -> refNum Reference number for the library.

<- sat Contains latest satellite information
 from the GPS. See the comments
 below.

Result gpsErrNone No error.

gpsErrNotOpen The GPS Library is not open.

GPS Library
GPS Library Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 15

gpsErrNoData No data has been received for a
 period of time.

Comments If the return value is not gpsErrNone, the data should be considered
invalid.

The sat parameter must point to enough memory to hold the
maximum number of satellites worth of satellite data.

GPSGetStatus

Purpose Get current status data.

Prototype Err GPSGetStatus(const UInt16 refNum,
GPSStatusDataType *status)

Parameters -> refNum Reference number for the library.

<- status Contains the latest status from the
 GPS.

Result gpsErrNone No error.

gpsErrNotOpen The GPS Library is not open.

gpsErrNoData No data has been received for a
 period of time.

Comments If the return value is not gpsErrNone, the data should be considered
invalid.

GPSGetTime

Purpose Get current time data.

Prototype Err GPSGetTime(const UInt16 refNum,
GPSTimeDataType *time)

Parameters -> refNum Reference number for the library.

<- time Contains latest time data from the
 GPS.

Result gpsErrNone No error.

gpsErrNotOpen The GPS Library is not open.

GPS Library
GPS Library Functions

16 Programmer’s Reference for Garmin iQue 3600 Handheld

gpsErrNoData No data has been received for a
 period of time.

Comments If the return value is not gpsErrNone, the data should be considered
invalid.

GPSGetVelocity

Purpose Get current velocity data.

Prototype Err GPSGetVelocity(const UInt16 refNum,
GPSVelocityDataType *velocity)

Parameters -> refNum Reference number for the library.

<- velocity Contains the latest velocity data from
 the GPS.

Result gpsErrNone No error.

gpsErrNotOpen The GPS Library is not open.

gpsErrNoData No data has been received for a
 period of time.

Comments If the return value is not gpsErrNone, the data should be considered
invalid.

GPSOpen

Purpose Opens the GPS Library.

Prototype Err GPSOpen(const UInt16 refNum)

Parameters -> refNum Reference number for the library.

Result gpsErrNone No error.

 gpsErrMemory Not enough memory to open the
 library.

Comments Opens the GPS Library and prepares it for use. Called by any
application or library that wants to use the services that the library
provides.

GPS Library

Programmer’s Reference for Garmin iQue 3600 Handheld 17

GPSOpen must be called before calling any other GPS Library
functions, with the exception of GPSGetLibAPIVersion.

4
Pen Input Manager
This chapter describes the Pen Input Manager API declared in the
header file PenInputMgr.h. It discusses the following topics:

• Introduction to the Pen Input Manager
• Pen Input Manager Data Structures
• Pen Input Manager Constants
• Pen Input Manager Functions.

Introduction to the Pen Input Manager

Pen Input Manager
The Pen Input Manager controls the area of the screen that is
traditionally silkscreened onto the device. On the iQue 3600, this area
is controlled by software, and it is sometimes referred to as "soft
graffiti" or "collapsible graffiti". This area is comprised of two parts.
The upper part is the dynamic input area, or graffiti area; the lower part
is the status bar. The dynamic input area can be open (shown) or closed
(hidden), while the status bar is always shown.

There is a button in the status bar that allows the user to show or hide
the dynamic input area. This button is called the "input trigger". It
shows a down arrow if the dynamic input area is open, or an up arrow
if the dynamic input area is closed.

The input trigger can be enabled or disabled. If the input trigger is
enabled, the user can control the state of the dynamic input area; if the
input trigger is disabled, the input trigger is grayed out and the user
cannot control the state of the dynamic input area.

Dynamic Input Area Concepts
Normally, users are the ones who change the dynamic input area state
by tapping the input trigger button in the status bar, but applications
also have the ability to set the dynamic input area state and to disable
the trigger that allows the user to change the state.

Pen Input Manager
Introduction to the Pen Input Manager

18 Programmer’s Reference for Garmin iQue 3600 Handheld

There are two dynamic input area states, open and closed. The function
PINSetInputAreaState() changes the state of the dynamic input
area. Applications may query the dynamic input area state using
PINGetInputAreaState().

There are two input trigger states, enabled and disabled. The function
PINSetInputTriggerState() changes the state of the input
trigger. Applications may query the input trigger state using
PINGetInputTriggerState().

There are two dynamic input area policies. The default is to have the
dynamic input area open and the input trigger disabled. The second
policy allows the application and the user to control the dynamic input
area state and the input trigger state. Applications should set the form�s
dynamic input area policy by calling FrmSetDIAPolicyAttr()in
the frmLoadEvent. Each form in an application will use the default
policy if FrmSetDIAPolicyAttr()is not called by the application.

Applications should register what size they want to be in the
frmLoadEvent by calling WinSetConstraintsSize().

Pen Input Manager Feature
The Pen Input Manager registers its API version with the feature
manager. Use the following feature manager call to determine the Pen
Input Manager API version:

err = FtrGet(pinCreator, pinFtrAPIVersion,
&APIVersion);

The current Pen Input Manager API version is 1.0, and is fully
compatible with the PalmSource� Pen Input Manager API version 1.0.

If FtrGet returns ftrErrNoSuchFeature, then the Pen Input
Manager is not present and should not be used.

Using the Pen Input Manager
To get access to the Pen Input Manager, #include
PenInputMgr.h in your 68K application. Since the Pen Input
Manager is an extension and not a library, it is available without being
found or loaded.

To enable the input trigger and therefore give users the ability to close
the dynamic input area, you must make the following calls in the
frmLoadEvent:

/*---
Set the constraints.

Pen Input Manager
Pen Input Manager Data Structures

Programmer’s Reference for Garmin iQue 3600 Handheld 19

---*/
WinSetConstraintsSize(WinGetDisplayWindow(),
160, 160, pinMaxConstraintSize, 160, 160,
160);

/*---
Set the dynamic input area policy.
---*/
FrmSetDIAPolicyAttr(FrmGetActiveForm(),

FrmDIAPolicyCustom);

/*---
Enable the input trigger.
---*/
PINSetInputTriggerState
(pinInputTriggerEnabled);

Determining When the Dynamic Input Area
State Changes
Whenever the state of the dynamic input area changes, the Pen Input
Manager broadcasts a sysNotifyDisplayResizedEvent.
Register for this notification if your application needs to know when
the dynamic input area changes. If you register, be sure to unregister
before your application exits. If you fail to unregister, "the system will
crash when the notification is broadcast" (according to the Palm OS®

Programmer�s Companion).

Determining the Size of the Application
Display Area
WinGetDisplayExtent() returns the current size of the display
window. Typically, at initialization and upon receipt of a
sysNotifyDisplayResizedEvent notification, your application
will get the current size of the display window and adjust the locations
of the various user interface items as needed.

The supplied PINMgrExample application is provided to demonstrate
the usage of various aspects of the Pen Input Manager.

Pen Input Manager Data Structures

FrmDIAPolicyT16
FrmDIAPolicyT16 specifies the dynamic input area policy type.

typedef UInt16 FrmDIAPolicyT16; enum

Pen Input Manager
Pen Input Manager Data Structures

20 Programmer’s Reference for Garmin iQue 3600 Handheld

{
frmDIAPolicyStayOpen,
frmDIAPolicyCustom
};

Value Descriptions

frmDIAPolicyStayOpen The dynamic input area stays
open and the input trigger is
disabled. This is the default.

frmDIAPolicyCustom The dynamic input area state and
input trigger state may be
controlled by the application and
the user.

PinInputAreaStateT16
PinInputAreaStateT16 specifies the dynamic input area state.

typedef UInt16 PinInputAreaStateT16; enum
{
pinInputAreaOpen,
pinInputAreaClosed,
pinInputAreaNone
};

Value Descriptions

pinInputAreaOpen The dynamic input area is
displayed. This is the default.

pinInputAreaClosed The dynamic input area is not
being displayed.

pinInputAreaNone There is no dynamic input area.

PinInputTriggerStateT16
PinInputTriggerStateT16 specifies the input trigger state.

typedef UInt16 PinInputTriggerStateT16; enum
{
pinInputTriggerEnabled,
pinInputTriggerDisabled,
pinInputTriggerNone
};

Value Descriptions

Pen Input Manager
Pen Input Manager Constants

Programmer’s Reference for Garmin iQue 3600 Handheld 21

pinInputTriggerEnabled The status bar icon is enabled,
meaning that the user is allowed
to open and close the dynamic
input area.

pinInputTriggerDisabled The status bar icon is disabled,
meaning that the user is not
allowed to open and close the
dynamic input area. This is the
default.

pinInputTriggerNone There is no dynamic input area.

Pen Input Manager Constants

pinMaxConstraintSize Maximum size for setting
constraint sizes.

pinErrInvalidParam An invalid state parameter was
entered.

Pen Input Manager Functions

FrmGetDIAPolicyAttr

Purpose Get a form�s dynamic input area policy.

Prototype FrmDIAPolicyT16 FrmGetDIAPolicyAttr
(FormPtr formP)

Parameters -> formP Pointer to a form.

Result The form�s dynamic input area policy.

Comments This routine is used to determine a form�s dynamic input area policy.
The default dynamic input area policy is frmDIAPolicyStayOpen.

FrmSetDIAPolicyAttr

Purpose Set a form�s dynamic input area policy.

Prototype Err FrmSetDIAPolicyAttr(FomrPtr formP,
const FrmDIAPolicyT16 diaPolicy)

Pen Input Manager
Pen Input Manager Functions

22 Programmer’s Reference for Garmin iQue 3600 Handheld

Parameters -> formP Pointer to a form.

-> diaPolicy The policy to use for this form.

Result errNone No error.

pinErrInvalidParam Parameter is not valid.

Comments This routine is used to set a form�s dynamic input area policy, which
will be used for opening and closing the dynamic input area.
Applications should call this function in response to the
frmLoadEvent. If an application does not call this function, the
policy for that application will be frmDIAPolicyStayOpen.

PINGetInputAreaState

Purpose Get the current state of the dynamic input area.

Prototype PinInputAreaStateT16 PINGetInputAreaState(void)

Parameters None

Result Current state of the dynamic input area.

Comments Call this routine to determine whether the dynamic input area is open or
closed.

PINGetInputTriggerState

Purpose Get the current state of the input trigger.

Prototype PinInputTriggerStateT16
PINGetInputTriggerState(void)

Parameters None

Result Current state of the input trigger.

Comments Call this routine to determine if the input trigger is enabled or disabled.

PINSetInputAreaState

Purpose Set the state of the dynamic input area.

Pen Input Manager
Pen Input Manager Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 23

Prototype Err PINSetInputAreaState
(const PinInputTriggerStateT16 state)

Parameters -> state The desired state of the dynamic
input area.

Result errNone No error .

pinErrInvalidParam Parameter is not valid .

Comments This routine allows the application to set the state of the dynamic input
area. Unless the appropriate constraints have been registered and the
dynamic input area policy set to custom, the only state allowed is open.

PINSetInputTriggerState

Purpose Set the state of the input trigger.

Prototype Err PINSetInputTriggerState
(const PinInputTriggerStateT16 state)

Parameters -> state The desired state of the input trigger.

Result errNone No error.

pinErrInvalidParam Parameter is not valid.

Comments This routine enables or disables the input trigger. Unless the
appropriate constraints have been registered and the dynamic input area
policy set to custom, the only state allowed is disabled.

Normally, the trigger should remain enabled, allowing the user the
choice of displaying the dynamic input area or not. In certain
circumstances, an application might want to prevent the display of the
dynamic input area or ensure the display of the dynamic input area. If
the application disables the trigger, it should enable it in response to the
appStopEvent.

WinSetConstraintSize

Purpose Register an application�s size constraints.

Prototype Err WinSetConstraintsSize(WinHandle winHandle,
const Coord minHeight, const Coord prefHeight,
const Coord maxHeight, const Coord minWidth,
const Coord prefWidth, const Coord maxWidth)

Pen Input Manager
Pen Input Manager Functions

24 Programmer’s Reference for Garmin iQue 3600 Handheld

Parameters -> winHandle Handle to a window.

-> minHeight The minimum height to which this
window can be sized.

-> prefHeight The preferred height for this
 window.

-> maxHeight The maximum height for this
window.

-> minWidth The minimum width for this
 window.

-> prefWidth The preferred width for this window.

-> maxWidth The maximum width for this
 window.

Result errNone No error.

Comments The values are specified using the standard coordinate system, which
refers to the original screen size of 160 X 160.

Currently only the maxHeight parameter is used. If your application
desires to allow the dynamic input area to be closed, specify the
constant pinMaxConstraintSize for this parameter.

Programmer’s Reference for Garmin iQue 3600 Handheld 25

5
Additional
Hardware Buttons
This chapter describes the additional hardware buttons on the Garmin
iQue 3600 Handheld. It discusses the following topics:

• Introduction to the Additional Buttons
• Button Activity Reporting
• Button Constants
• Responding to the Additional Buttons

Introduction to the Additional Buttons

Additional Buttons
To help provide support for one-hand applications, additional hardware
buttons have been added to the side of the Garmin iQue3600.

The additional Garmin buttons are:
- a Thumbwheel, which can be pressed up, down, or in;
- an Escape button;
- a Record button.

To access these additional hardware buttons, #include
GarminChars.h in your application.

Garmin Buttons and the Palm OS® Simulator
The Garmin buttons have been mapped to keys in the supplied Palm
OS® Simulator as follows:

Thumb Wheel Up: F6
Thumb Wheel Down: F8
Thumb Wheel In: F7
Escape Button: F9
Record Button: F11

The Escape and Record button exhibit the "momentarily pressed" and
"pressed and held" behavior described below.

Additional Hardware Buttons
Button Activity Reporting

26 Programmer’s Reference for Garmin iQue 3600 Handheld

Button Activity Reporting

Button activity is reported by keyDownEvents. The Escape and
Record buttons generate different data depending on whether they are
momentarily pressed or pressed and held. If they are momentarily
pressed, the keyDownEvent is sent when they are released. If they
are pressed and held, the keyDownEvent is sent after they have been
held for a period of time, even if the button has not been released.

The Garmin virtual character codes are sent in the keyCode field of
the keyDownEvent data. The keyDownEvents also provide values
in the chr field, to allow unmodified applications to respond to the
additional buttons.

The Thumbwheel can also be held in. This action is dedicated to
marking a waypoint at the current GPS position, and is not accessible to
third-party developers.

Button Constants

The values sent in the keyCode and chr fields are defined as follows:

Button keyCode chr
Thumbwheel up vchrGarminThumbWheelUp vchrPageUp
Thumbwheel down vchrGarminThumbWheelDown vchrPageDown
Thumbwheel in vchrGarminThumbWheelIn chrCarriageReturn
Escape vchrGarminEscape vchrGarminEscape
Escape held vchrGarminEscapeHeld vchrGarminEscapeHeld
Record vchrGarminRecord vchrGarminRecord
Record held vchrGarminRecordHeld vchrGarminRecordHeld

The values returned by KeyCurrentState() for Garmin keys are
as follows:

Button Value

Thumbwheel up keyBitGarminThumbWheelUp
Thumbwheel down keyBitGarminThumbWheelDown
Thumbwheel in keyBitGarminThumbWheelIn
Escape keyBitGarminEscape
Record keyBitGarminRecord

Responding to the Additional Buttons

Additional Hardware Buttons
Responding to the Additional Buttons

Programmer’s Reference for Garmin iQue 3600 Handheld 27

Typically your application will respond to Garmin buttons by checking
for a Garmin keyDownEvent before dispatching the event to any
other handlers.

do
{

 /*---------------------------------------
 Get an event.
 ---------------------------------------*/
 EvtGetEvent(&event, evtWaitForever);

/*---------------------------------------
 Send to each handler in order, if not
already used.
---------------------------------------*/
if (! GarminKeyHandleEvent(&event))

{
if (! SysHandleEvent(&event))
 {
 if (! MenuHandleEvent(0, &event,

 &error))
{
if (! AppHandleEvent(&event))
 {
 FrmDispatchEvent(&event);
 }
}

 }
}

} while (event.eType != appStopEvent);

You should not wait to handle the Garmin button event in
AppHandleEvent, since the event contains values in the chr field
and will likely be handled by the system or menu event handler.

The macro GarminKeyIsGarmin() in GarminChars.h can be
used to detect if the keyDownEvent is one of the Garmin keys. If you
process the event you should not dispatch it to the other event handlers,
since the event contains values in the chr field and will likely also be
handled by the system or menu event handler.

Programmer’s Reference for Garmin iQue 3600 Handheld 29

6
Power Manager
Library
This chapter describes the Power Manager Library declared in the
header file PwrMgrLib68K.h. It discusses the following topics:

• Introduction to the Power Manager Library
• Power Manager Library Functions

Introduction to the Power Manager Library

Low Power Mode
When the iQue 3600 enters low power mode, the display and backlight
are turned off, while the processor, GPS, and audio continue to operate
normally. Low power mode can be used to extend the battery life while
continuing to allow the handheld to execute applications, such as an
audio player. If any application has enabled low power mode, when the
auto-off time has expired the iQue 3600 will enter low power mode
instead of powering off. Low power mode is indicated by the LED
blinking briefly approximately every 10 seconds. Note that low power
mode uses substantially more battery power than allowing the handheld
to power off.

If an application desires to have the iQue 3600 enter low power mode
when the auto-off time has expired, the application should enable low
power mode. Low power mode will stay enabled until your application
disables it; therefore it is extremely important that your application
disables low power mode when it no longer needs to be enabled. Note
that if your application disables low power mode it does not guarantee
the handheld will power off, as another application could also have low
power mode enabled; however if your application enables low power
mode, it does guarantee that the handheld will enter low power mode
and will not power off.

Using the Power Manager Library

Power Manager Library
Power Manager Library Functions

30 Programmer’s Reference for Garmin iQue 3600 Handheld

The Power Manager Library provides access to this power saving
functionality in the iQue 3600. To get access to the Power Manager
Library, #include PwrMgrLib68K.h in your application.

Before the Power Manager Library can be used, it must be found or
loaded, using the standard Palm OS® paradigm:

/*---
Find the Power Manager library. If not found,
load it.
---*/
error = SysLibFind(kPwrMgrLibName,
&gPwrMgrLibRef);

if (error != errNone)
{
error = SysLibLoad(kPwrMgrLibType,
kPwrMgrLibCreator, gPwrMgrLibRef);

ErrFatalDisplayIf((error != errNone),
"can't load Power Manager Library");
}

Once your application is done using the Power Manager Library
(normally when the application stops), you should unload the library
using the standard Palm OS® paradigm:

/*---
Remove the library.
---*/
SysLibRemove(gPwrMgrLibRef);

The supplied PwrMgrExample application is provided to demonstrate
the usage of the Power Manager Library.

The Power Manager Library and the Palm
OS® Simulator

The Power Manager Library is not supported by the Palm OS®

Simulator.

Power Manager Library Functions

PwrSetLowPowerMode

Purpose Set low power mode.

Power Manager Library
Power Manager Library Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 31

Prototype Boolean PwrSetLowPowerMode(UInt16 refNum,
const UInt32 creator, const Boolean enable)

Parameters -> refNum Reference number for the library.

-> creator Creator ID of the calling application.

-> enable Set low power mode to true or false.

Result Returns true if the action was successful.

Comments If enable is true, the handheld will enter low power mode when the
auto-off time has expired. If enable is false, low power mode for
your application is disabled.

Programmer’s Reference for Garmin iQue 3600 Handheld 33

7
Que API Library
This chapter describes the Que API declared in the header file
QueAPI.h. It discusses the following topics:

• Introduction to the Que API Library
• Que API Library Data Structures
• Que API Library Constants
• Que API Library Functions

Introduction to the Que API Library

Que API Library
The Que API Library provides access to Garmin map data stored in
device�s internal memory or stored on an external card. The Que API
library allows applications to create points at a specified latitude and
longitude, at the location of an address, at the location the user selects
from a map, and at the location of an item the user selects through the
find menu. The Que API library also allows applications to get
information about a point, display a form showing the details of a point
including its location on a map, display the map application centered on
the point, and create a route from the current location to a point.

Que API Library Concepts
The data returned when a point is created is a handle to the point, not
the actual data for the point. The advantages to this approach include:
• Isolates applications from memory management issues.
• Isolates applications from the details of the point data structure and

size, which helps ensure future compatibility.

Point handles can either be open or closed. A handle is open when it is
associated with data for a point; handles are opened when a point is
created. A handle is closed when it is not associated with data for a
point. Calling QueClosePoint() closes open handles; closed
handles have a value of queInvalidPointHandle.

The use of handles requires following a few simple rules:

Que API Library
Introduction to the Que API Library

34 Programmer’s Reference for Garmin iQue 3600 Handheld

• Before a handle is used it is considered closed; therefore handles
must be initialized to QueInvalidPointHandle.

• A handle is opened when it is assigned a value from one of the
following APIs:
• QueCreatePoint()
• QueCreatePointFromEvent()
• QueDeserializePoint()

• Before your application exits, or when you are through using a
point, the handle must be closed by calling QueClosePoint().
After calling QueClosePoint() your application must set the
handle to QueInvalidPointHandle.

• To store a point between invocations of your application, you must
store the serialized data using QueSerializePoint() before
your application exits and re-create the point from the serialized
data using QueDeserializePoint() when your application
starts. You must never store a handle between invocations of your
application.

Making the Que API Library Available

In order for the Que API library to be accessible, the Que API Library
patch must be installed on the handheld. The patch may be downloaded
from the iQue 3600 Software Update Collection page of the Garmin
web site. One way to navigate to this page is to select Software Updates
from the Quick Links along the left side of the home page, then select
iQue 3600 from the list of units.

Opening and Closing the Que API Library

To get access to the Que API Library, #include QueAPI.h in your
application.

Before the Que API Library can be used, it must be found or loaded,
using the standard Palm OS® paradigm:

/*---
Find the Que API library. If not found, load
it.

---*/
error = SysLibFind(QueAPILibName,
&gQueAPILibRef);

if (error != errNone)
{
error = SysLibLoad

Que API Library
Introduction to the Que API Library

Programmer’s Reference for Garmin iQue 3600 Handheld 35

(
QueAPILibType,
QueAPILibCreator,
&gQueAPILibRef
);

ErrFatalDisplayIf((error != errNone),
"can't load QueAPI Library");
}

Once the Que API Library is found and loaded, it must be opened by
calling QueAPIOpen(). The queAPIVersion constant from
QueAPI.h is supplied as a parameter to allow the library to determine
if the version of the library expected by calling application is
compatible with the version of the library that is loaded.
QueAPIOpen() returns queErrInvalidVersion when the
versions are not compatible:

error = QueAPIOpen(gQueAPILibRef,
queAPIVersion);

ErrFatalDisplayIf((error ==
queErrInvalidVersion), "Incompatible
version of QueAPILib.");

Once your application is done using the Que API Library (normally
when the application stops), you should close and unload the library
using the standard Palm OS® paradigm:

/*---
Close the library.
---*/
error = QueAPIClose(gQueAPILibRef);

/*---
Unload the Library.
---*/
if (error == QueErrNone)

{
SysLibRemove(gQueAPILibRef);
}

Point Data Returned Through a Launch Code

Certain Que API Library APIs terminate the calling application in order
to launch other applications to perform the work. When the work is
done, the application specified in the API call is launched with a launch
code that contains the resulting point data. This requires the application
which receives the launch code to process this launch code data.

Que API Library
Introduction to the Que API Library

36 Programmer’s Reference for Garmin iQue 3600 Handheld

First, the PilotMain() procedure must handle the
sysAppLaunchCmdGoTo launch code. The exact way this is
handled depends on your application; however it will generally be
handled identically to a sysAppLaunchCmdNormalLaunch with
the addition of sending the goto data to the initial form before entering
the event loop. If your application is already the current application, all
that must be done is to send the goto data to the active form. This is
illustrated below:

case sysAppLaunchCmdGoTo:
 /*-------------------------------------
 If we have just been launched.
 -------------------------------------*/
 if (aLaunchFlags
 & sysAppLaunchFlagNewGlobals
)
 {
 /*---------------------------------
 Start the application and go to
 the main form.
 ---------------------------------*/
 AppStart();
 FrmGotoForm(MainForm);

 /*---------------------------------
 Send the goto data to the main
 form.
 ---------------------------------*/
 HandleGoTo
 ((GoToParamsPtr) aCmdPBP
 , MainForm
);

 /*---------------------------------
 Enter the event loop and stop the
 application when done.
 ---------------------------------*/
 AppEventLoop();
 AppStop();
 }

 /*-------------------------------------
 Otherwise this is already the current
 application, just send the goto data
 to the main form.

Que API Library
Introduction to the Que API Library

Programmer’s Reference for Garmin iQue 3600 Handheld 37

 -------------------------------------*/
 else
 {
 HandleGoTo
 ((GoToParamsPtr) aCmdPBP
 , MainForm
);
 }
 break;

Second, the HandleGoTo() procedure must take the goto data from
the launch command and send it to the form as a frmGotoEvent as
shown below:

static void HandleGoTo
 (GoToParamsPtr aGoToParams
 , const UInt16 aFormID
)
{
EventType event;

MemSet(&event, sizeof(EventType), 0);
event.eType = frmGotoEvent;
event.data.frmGoto.formID = aFormID;
event.data.frmGoto.recordNum =
 aGoToParams->recordNum;
event.data.frmGoto.matchPos =
 aGoToParams->matchPos;
event.data.frmGoto.matchLen =
 aGoToParams->matchCustom;
event.data.frmGoto.matchFieldNum =
 aGoToParams->matchFieldNum;
event.data.frmGoto.matchCustom =
 aGoToParams->matchCustom;
EvtAddEventToQueue(&event);
}

Third, the event handler for the form that will receive the
frmGotoEvent must call QueHandleEvent(). If
QueHandleEvent() returns true,
QueCreatePointFromEvent() must be called to create a point
from the event as shown below:

if (QueHandleEvent
 (gQueAPILibRef
 , aEventP)

Que API Library
Introduction to the Que API Library

38 Programmer’s Reference for Garmin iQue 3600 Handheld

)
 {
 QueCreatePointFromEvent
 (gQueAPILibRef
 , aEventP
 , &gPoint
);
 }

The Que API Library APIs which return data through a launch code
are:
• QueCreatePointFromAddress()
• QueSelectAddressFromFind()
• QueSelectPointFromFind()
• QueSelectPointFromMap()

See the Que API library example application in the SDK for a complete
example of processing point data returned through a launch code.

The Que API Library and the Palm OS®

Simulator

The Garmin Palm OS® Simulator supports accessing map data. To
make map data available to the simulator, a Palm database file
containing the detailed map data, named GMAPSUPP.PDB, must be
placed in the AutoLoad folder of the GarminSimulator folder. A Palm
database file containing basemap data, named GMAPBMAP.PDB, may
also be placed in the AutoLoad folder. Note that the combined size of
the map files plus the other files in the AutoLoad folder cannot exceed
the RAM size chosen in the simulator settings.

To create a GMAPSUPP.PDB:
• Follow the Map Install tool steps to select map sections for

installation. The Map Install tool is available along the left side of
the Garmin Palm Desktop.

• In the Device Setting section, select one of the iQue devices listed,
then select Internal Storage for the Map Storage Location.

• After clicking the OK button on the �Transfer Complete � HotSync
Required� dialog box, instead of performing a HotSync, move the
GMAPSUPP.PDB from the Install folder for the device to the
AutoLoad folder of the GarminSimulator folder.

To create a GMAPBMAP.PDB:

Que API Library
Que API Library Data Structures

Programmer’s Reference for Garmin iQue 3600 Handheld 39

• Copy GMAPBMAP.PDB from the Basemap\AMR_LITE folder of
the Garmin install CD to the AutoLoad folder of the
GarminSimulator folder.

Que API Library Data Structures

Basic Data Types

uint8 Unsigned 8 bit integer.

uint16 Unsigned 16 bit integer.

uint32 Unsigned 32 bit integer.

sint8 Signed 8 bit integer.

sint16 Signed 16 bit integer.

sint32 Signed 32 bit integer.

TCHAR Char type.

QuePositionDataType
QuePositionDataType specifies the 3 dimensional position of a
point.

typedef struct
 {
 sint32 lat;
 sint32 lon;
 float altMSL;
 } QuePositionDataType;

Field Descriptions

lat The latitude of the point in semicircles.
Semicircles are described in GPS data
structure GPSPositionDataType.

lon The longitude of the point in semicircles.
Semicircles are described in GPS data
structure GPSPositionDataType.

altMSL The altitude above mean sea level of the
point in meters. This field is not used.

Que API Library
Que API Library Data Structures

40 Programmer’s Reference for Garmin iQue 3600 Handheld

QuePointType

QuePointType specifies the information about the position that is
available to an application.

typedef struct
 {
 char id[quePointIdLen];
 QueSymbolT16 smbl;
 QuePositionDataType posn;
 } QuePointType;

Field Descriptions

id A NULL-terminated string
containing the name of the point.

smbl The symbol assocated with the
point. This field is not used.

posn The 3 dimensional position of the
point.

QueSelectAddressType

QueSelectAddressType specifies the address fields that can be
supplied when creating a point at an address.

typedef struct
 {
 const TCHAR *streetAddress;
 const TCHAR *city;
 const TCHAR *state;
 const TCHAR *country;
 const TCHAR *postalCode;
 } QueSelectAddressType;

Field Descriptions

streetAddress A pointer to a NULL-terminated
string containing the street
number and street name of the
address.

Que API Library
Que API Library Constants

Programmer’s Reference for Garmin iQue 3600 Handheld 41

city A pointer to a NULL-terminated
string containing the city of the
address.

state A pointer to a NULL-terminated
string containing the state of the
address.

country A pointer to a NULL-terminated
string containing the country of
the address.

postalCode A pointer to a NULL-terminated
string containing the postal code
of the address.

Que API Library Constants

Error Codes

queErrNone Success.

queErrNotOpen attempted to close the library
without opening it first.

queErrBadArg Invalid parameter passed.

queErrMemory Out of memory.

queErrNoData No data available.

queErrAlreadyOpen The library is already open.

queErrInvalidVersion The library is an incompatible
version.

queErrCmndUnavail The command is unavailable.

queErrStillOpen Library is still open.

queErrFail General failure.

queErrCancel Action cancelled by user.

Other values

Que API Library
Que API Library Functions

42 Programmer’s Reference for Garmin iQue 3600 Handheld

quePointIdLen Length of the point identifier
string including the NULL-
termination character.

queInvalidSemicircles Invalid semicircle value.

queInvalidAltitude Invalid altitude value.

queInvalidPointHandle Invalid point handle.

queInvalidSymbol Invalid symbol value.

Que API Library Functions

QueAPIClose

Purpose Closes the Que API Library.

Prototype QueErrT16 QueAPIClose(const UInt16 refNum)

Parameters -> refNum Reference number for the library.

Result queErrNone No error.

queErrNotOpen The library is not open.

queErrStillOpen Couldn't be closed because the
library is still in use by other
applications.

Comments Closes the Que API Library and disposes of the global data memory if
required. Called by any application or library that's been using the Que
API Library and is now finished with it.

This should not be called if QueAPIOpen failed.

If queErrStillOpen is returned, the calling app should not call
SysLibRemove().

QueAPIOpen

Purpose Opens the Que API Library.

Prototype QueErrT16 QueAPIOpen(
const UInt16 refNum, const UInt16 version)

Que API Library
Que API Library Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 43

Parameters -> refNum Reference number for the library.

-> version Version of library expected by the
application.

Result queErrNone No error.

queErrMemory Unable to get memory for the
library.

queErrInvalidVersion The expected version of the library is
not compatible with this library.

Comments Opens the Que API Library and prepares it for use. Called by any
application or library that wants to use the services that the library
provides.

QueAPIOpen() must be called before calling any other Que API
Library functions. If the return value is anything other than
queErrNone the library was not opened.

QueClosePoint

Purpose Closes the handle to a point.

Prototype QueErrT16 QueClosePoint(
const UInt16 refNum,
const QuePointHandle point)

Parameters -> refNum Reference number for the library.

-> point Point handle to be closed.

Result queErrNone No error.

queErrBadArg The point handle was not open.

Comments Closes the handle to a point. This must be called for all open point
handles before exiting your application. After calling this procedure,
the caller should set the point handle to queInvalidPointHandle
to indicate that it has been closed.

QueCreatePoint

Purpose Creates a point with the specified data.

Que API Library
Que API Library Functions

44 Programmer’s Reference for Garmin iQue 3600 Handheld

Prototype QueErrT16 QueCreatePoint(const UInt16 refNum,
const QuePointType *pointData,
QuePointHandle *point)

Parameters -> refNum Reference number for the library.

-> pointData Pointer to the data to use when
creating the point.

<- point Contains the point handle of the
created point.

Result queErrNone No error.

queErrMemory Unable to get memory for the point.

queErrBadArg The point handle was already open.

Comments If an error occurs, the returned point handle may not be open.

QueCreatePointFromAddress

Purpose Creates a point from the specified address data.

Prototype QueErrT16 QueCreatePointFromAddress(
const UInt16 refNum,
const QueSelectAddressType *address,
const UInt32 relaunchAppCreator)

Parameters -> refNum Reference number for the library.

-> address Pointer to the address data to use
when creating the point.

-> relaunchAppCreator Creator ID of the application to
launch when the point has been
created.

Result queErrNone No error.

queErrMemory Unable to get the library�s global
data.

Comments Creates a point at the location of the specified address.

Que API Library
Que API Library Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 45

IMPORTANT: This call terminates the calling application and
returns the results through a launch code. See the Point Data
Returned Through a Launch Code section for more details.

Not all fields of the input address data need to be supplied; a match will
be attempted using the fields that contain data. Any unused fields
should be set to NULL.

If a single address match cannot be found an invalid point handle will
be returned through the launch code.

QueCreatePointFromEvent

Purpose Creates a point from a frmGotoEvent that contains point data.

Prototype QueErrT16 QueCreatePointFromEvent(
const UInt16refNum, const EventType*event,
QuePointHandle *point)

Parameters -> refNum Reference number for the library.

-> event Pointer to the frmGotoEvent that
contains point data.

<- point Contains the point handle of the
created point.

Result queErrNone No error.

queErrNoData The event did not contain the
necessary data.

queErrBadArg The point handle was already open.

queErrMemory Unable to allocate memory for the
point or unable to get the library�s
global data.

Comments Creates a point from the frmGotoEvent data. This event is sent
when the specified application is launched after calling certain Que API
library APIs. See the Point Data Returned Through a Launch Code
section for more details. This should only be called if the result of
QueIsFindResultEvent() is true.

If an error is returned the point handle will not be open.

Que API Library
Que API Library Functions

46 Programmer’s Reference for Garmin iQue 3600 Handheld

QueDeserializePoint

Purpose Creates a point from serialized point data.

Prototype QueErrT16 QueDeserializePoint(
const UInt16 refNum, const void *pointData,
const UInt32 pointDataSize,
QuePointHandle *point)

Parameters -> refNum Reference number for the library.

-> pointData Pointer to the serialized point data.

-> pointDataSize Size in bytes of the serialized point
data.

<- point Contains the point handle of the
created point.

Result queErrNone No error.

queErrBadArg The point handle was already open,
the pointer to the serialized data was
NULL, the point data size was
incorrect, or the format of the
serialized point data was not
recognized.

queErrMemory Unable to allocate memory for the
point or unable to get the library�s
global data.

Comments Creates a point from the serialized point data created by
QueSerializePoint(). See the description of
QueSerializePoint() for more information.

If an error is returned the point handle will not be open.

QueGetPointInfo

Purpose Returns information about the point.

Prototype QueErrT16 QueGetPointInfo(const UInt16 refNum,
const QuePointHandle point,
QuePointType *pointInfo)

Que API Library
Que API Library Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 47

Parameters -> refNum Reference number for the library.

-> point Point handle from which to get
information.

<- pointInfo Contains the information about the
point.

Result queErrNone No error.

queErrBadArg The point handle was not open.

QueHandleEvent

Purpose Handles Que API library events.

Prototype Boolean QueHandleEvent(const UInt16 refNum,
const EventType *event)

Parameters -> refNum Reference number for the library.

-> event Pointer to the event.

Result Returns true if the event contains contains point data. If the event
contains point data then QueCreatePointFromEvent()can be
called to create a point from the event.

Comments This should be called in the active form�s event loop because there is
other Que API library processing performed during this call.

QueRouteToPoint

Purpose Creates a route from the current location to the point.

Prototype QueErrT16 QueRouteToPoint(const UInt16 refNum,
const QuePointHandle point,
const Boolean showMap)

Parameters -> refNum Reference number for the library.

-> point Point handle to route to.

-> showMap true to terminate calling
application and activate the QueMap
application centered on the vehicle,
false to remain in the calling
application.

Que API Library
Que API Library Functions

48 Programmer’s Reference for Garmin iQue 3600 Handheld

Result queErrNone No error.

queErrBadArg The point handle is not open.

queErrMemory Unable to get the library�s global
data.

IMPORTANT: If showMap is true, this call terminates the calling
application.

QueSelectAddressFromFind

Purpose Allows the user to create a point by selecting an address from the find
address form.

Prototype QueErrT16 QueSelectAddressFromFind(
const UInt16 refNum,
const QueSelectAddressType *address,
const UInt32 relaunchAppCreator,
const Boolean tryToCreateFirst)

Parameters -> refNum Reference number for the library.

-> address Pointer to the address data to use
when selecting the point.

-> relaunchAppCreator Creator ID of the application to
launch when the point has been
created.

-> tryToCreateFirst Tries to create the point from the
address data before displaying the
find address form. See comments for
more details.

Result queErrNone No error.

queErrMemory Unable to get the library�s global
data.

Comments Displays the QueFind address form to allow the user to select an
address from which to create a point.

IMPORTANT: This call terminates the calling application and
returns the results through a launch code. See the Point Data
Returned Through a Launch Code section for more details.

Que API Library
Que API Library Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 49

The fields of the address form will be pre-filled with the supplied
address data. Not all fields of the input address data need to be
supplied; any unused fields should be set to NULL.

If tryToCreateFirst is true, this call will first attempt to create a
point at the location of the specified address exactly like
QueCreatePointFromAddress(). If a single address match is
found, it will be returned through the launch code and the QueFind
address form will not be displayed. If a single address match cannot be
found, then the QueFind address form is displayed exactly as if this was
called with tryToCreateFirst set to false.

If the user cancels finding an address an invalid point handle will be
returned through the launch code.

QueSelectPointFromFind

Purpose Allows the user to create a point by selecting an item using QueFind.

Prototype QueErrT16 QueSelectPointFromFind(
const UInt16 refNum,
const UInt32 relaunchAppCreator)

Parameters -> refNum Reference number for the library.

-> relaunchAppCreator Creator ID of the application to
launch when the point has been
created.

Result queErrNone No error.

queErrMemory Unable to get the library�s global
data.

Comments Displays QueFind to allow the user to select an item from which to
create a point. This is similar to QueSelectAddressFromFind()
except this will display the top-level QueFind page.

IMPORTANT: This call terminates the calling application and
returns the results through a launch code. See the Point Data
Returned Through a Launch Code section for more details.

If the user cancels finding an item an invalid point handle will be
returned through the launch code.

Que API Library
Que API Library Functions

50 Programmer’s Reference for Garmin iQue 3600 Handheld

QueSelectPointFromMap

Purpose Allows the user to create a point by selecting it from a map.

Prototype QueErrT16 QueSelectPointFromMap(
const UInt16 refNum,
const UInt32 relaunchAppCreator)

Parameters -> refNum Reference number for the library.

-> relaunchAppCreator Creator ID of the application to
launch when the point has been
created.

Result queErrNone No error.

queErrMemory Unable to get the library�s global
data.

Comments Allow the user to create a point by tapping a location on a displayed
map.

IMPORTANT: This call terminates the calling application and
returns the results through a launch code. See the Point Data
Returned Through a Launch Code section for more details.

If the user cancels the operation an invalid point handle will be returned
through the launch code.

QueSerializePoint

Purpose Returns the serialized data that represents the point.

Prototype UInt32 QueSerializePoint(const UInt16 refNum,
const QuePointHandle point,
void *pointData, const UInt32 pointDataSize)

Parameters -> refNum Reference number for the library.

-> point Point handle to serialize.

<- pointData Contains the serialized data.

-> pointDataSize Size in bytes of the pointData
buffer.

Que API Library
Que API Library Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 51

Result Returns the size in bytes of the serialized data.

Comments Returns the serialized data (i.e. series of bytes) that represents the point.
This is used for long-term storage of the point. The point can be re-
created by calling QueDeserializePoint().

This always returns the size in bytes of the serialized data. If the
supplied buffer is not large enough to hold all the serialized data, no
data will be written into the buffer.

Typical usage is to call QueSerializePoint() once with
pointData set to NULL and pointDataSize set to 0, then use
the returned size to allocate a buffer to hold the serialized data. Then
call QueSerializePoint()again with the address and size of the
allocated buffer.

IMPORTANT: Never set pointData to NULL without setting
pointDataSize equal to 0.

QueSetRouteToItem

Purpose Sets the route form �Route to� item to the point.

Prototype QueErrT16 QueSetRouteToItem(
const UInt16 refNum,
const QuePointHandle point)

Parameters -> refNum Reference number for the library.

-> point Point handle to set the �Route to�
item to, or an invalid point handle to
clear the �Route to� item.

Result queErrNone No error.

queErrMemory Unable to get the library�s global
data.

queErrFail Unable to set the �Route to� item.

Comments Sets the �Route to� item on the route form to the specified point. The
�Route to� item will be cleared when the library is closed, which
normally will happen when the application using the library exits. The

Que API Library
Que API Library Functions

52 Programmer’s Reference for Garmin iQue 3600 Handheld

item can be cleared by calling QueSetRouteToItem()with a point
handle value of queInvalidPointHandle.

The �Route to� item is the context-sensitive item that is displayed
above the route icons when QueRoutes is displayed modally by tapping
the route icon in the graffiti area or in the status bar.

QueViewPointDetails

Purpose Displays a modal form containing a map and other details about the
point.

Prototype QueErrT16 QueViewPointDetails(
const UInt16 refNum,
const QuePointHandle point)

Parameters -> refNum Reference number for the library.

-> point Point handle to view the details of.

Result queErrNone No error.

queErrMemory Unable to get the library�s global
data.

queErrBadArg The point handle is not open.

QueViewPointOnMap

Purpose Switches to the QueMap application centered on the point.

Prototype QueErrT16 QueViewPointOnMap(
const UInt16 refNum,
const QuePointHandle point)

Parameters -> refNum Reference number for the library.

-> point Point handle to view on map.

Result queErrNone No error.

queErrMemory Unable to get the library�s global
data.

queErrBadArg The point handle is not open.

Que API Library
Que API Library Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 53

Comments This terminates the calling application and launches the QueMap
application centered on the specified point.

IMPORTANT: This call terminates the calling application.

	Table of Contents
	Overview
	Purpose of This Document
	Conventions Used in This Document
	Tools for Software Development
	CodeWarrior for Palm OS® Platform
	Palm OS® 5.0 SDK
	Palm OS® 5.2 Simulator

	Garmin SDK
	Components
	Unpacking the SDK

	Features
	Feature Creator
	Feature Numbers
	garminFtrNumPenInputServices
	garminFtrNumExtraKeys
	garminFtrNumIntegratedGPS
	garminFtrNumMedia

	GPS Library
	Introduction to the GPS Library
	Using the GPS Library
	GPS Data and the Palm OS® Simulator

	GPS Library Data Structures
	GPSFixT8
	GPSModeT8
	GPSPositionDataType
	GPSPVTDataType
	GPSSatDataType
	GPSStatusDataType
	GPSTimeDataType
	GPSVelocityDataType

	GPS Library Constants
	GPS Library Error Codes
	Extended Notification Information
	Satellite Status Bitfield Values

	GPS Library Functions
	GPSClose
	GPSGetLibAPIVersion
	GPSGetMaxSatellites
	GPSGetPosition
	GPSGetPVT
	GPSGetSatellites
	GPSGetStatus
	GPSGetTime
	GPSGetVelocity
	GPSOpen

	Pen Input Manager
	Introduction to the Pen Input Manager
	Pen Input Manager
	Dynamic Input Area Concepts
	Pen Input Manager Feature
	Using the Pen Input Manager
	Determining When the Dynamic Input Area State Changes
	Determining the Size of the Application Display Area

	Pen Input Manager Data Structures
	FrmDIAPolicyT16
	PinInputAreaStateT16
	PinInputTriggerStateT16

	Pen Input Manager Constants
	Pen Input Manager Functions
	FrmGetDIAPolicyAttr
	FrmSetDIAPolicyAttr
	PINGetInputAreaState
	PINGetInputTriggerState
	PINSetInputAreaState
	PINSetInputTriggerState
	WinSetConstraintSize

	Additional Hardware Buttons
	Introduction to the Additional Buttons
	Additional Buttons
	Garmin Buttons and the Palm OS® Simulator

	Button Activity Reporting
	Button Constants
	Responding to the Additional Buttons

	Power Manager Library
	Introduction to the Power Manager Library
	Low Power Mode
	Using the Power Manager Library
	The Power Manager Library and the Palm OS® Simu�

	Power Manager Library Functions
	PwrSetLowPowerMode

	Que API Library
	Introduction to the Que API Library
	Que API Library
	Que API Library Concepts
	Making the Que API Library Available
	Opening and Closing the Que API Library
	Point Data Returned Through a Launch Code
	The Que API Library and the Palm OS® Simulator

	Que API Library Data Structures
	Basic Data Types
	QuePositionDataType
	QuePointType
	QueSelectAddressType

	Que API Library Constants
	Error Codes
	Other values

	Que API Library Functions
	QueAPIClose
	QueAPIOpen
	QueClosePoint
	QueCreatePoint
	QueCreatePointFromAddress
	QueCreatePointFromEvent
	QueDeserializePoint
	QueGetPointInfo
	QueHandleEvent
	QueRouteToPoint
	QueSelectAddressFromFind
	QueSelectPointFromFind
	QueSelectPointFromMap
	QueSerializePoint
	QueSetRouteToItem
	QueViewPointDetails
	QueViewPointOnMap

